

للصّف الثاني الثانوي
قـسم القـــوم الطبـيعـيـة
الفصّلْ الدِّراسيٌّ الأول

تألـــــف

د. محمد عبد الرحمن الـــويز
د. عبـد اللـه محـمـد الراشـد
أ. محمـد أمــــين شــــــاكر
أ. فارقق عبد الرزاق الددبان

د. سلمان عبد الرحمن السلمان
د. فـــوني أحـمــد الذكــير
د. صـــالــح الســنوســي

د. د محمد عبد الرحمن القاضي

> طبعة
> مr...V-Ar...

ردمك: $997 \cdot$ - YYY - 9 (مجموعة)
(1) $997 \cdot-Y Y-V$

أشـرف على الإعداد و الال نتاج

لهذا الكتاب قيمة مهنة وفاندة كبيرة فحافظ عليه واجعل نظافته
تشَهد على حسن سلوكك معه

> فإذا له تحتفظ بهذا الكتاب في مكتبتك الخاصة في آخر العام للاسـتَادة

موقع الورارة
www.moe.gov.sa
موقّع الإدارة العامة للمناهـج
www.moe.gov.sa/curriculum/index.htm
البريد الإلكتروني للادارة العامة للمناهـج
curriculum@moe.gov.sa

0~ـ

الحمد لله رب العالمين، علم بالقلم، علم الإنسان مـا لم يعلم، والصـلاة
 سيدنا محمد سيد الأولين والآخرين وعلى آله وصحبه أجمعين.
 الطبيعية- الجزء الأول من كتاب الرياضيات، وفق المنهج الجديد الذي الـيا التمدته الـيا وزارة التربية والتعليم، والذي تمت مناقشته هِ ندو الما

 المباشرة وحاولنا ربط المفاهيم والمهارات بحياة الطالب العملية وما يتلقاه من مختلف المواد الدراسية وما يٌٌ هذا العصر من معطيات تقنية بالإضافة إلى تراثنا المشرق وحضارتتا الإسـلامية الزاهرة.

البـاب الأول : العمليات الثنائية والزمرة . '
الباب الثاني : المصفوفات والحددات .

> الباب الرابع : الاالث : حساب المثلثات . المركبة .

وقد تم عرض ماورد في هذا الكتاب بشكل يساعد الطالب على التعلم
 وتم إيضـاحها من خلال أمثلة متتوعة ، لعلها تساعد الطالب على استيعاب هذه المعلومـات ، ونصيحتّا إلى طلابنا أن يجعلوا هذا الكتاب مرجـعهم في
 يتجنبوا استبدال الللخصـات بما في هذا الكتاب ، لآن اعتمـاد الطالب على الـى الملخصـات التي يعدها له غيره - حتى ولو كان معلمـه - يورثه المحدودية في
. التفكير

أملنا أن تصلنا من إخواننا المعلمين ملحوظاتهم مغصـلة - من خـلال التطبيق الميداني - شاكرين لهم تعاونهم البناء ، وأخر دعوانا أن الحمد لله
 . باحسان إلى يوم الدين

البـــــاب الأول

العمليات الثنائية والزُّمــــــــة

$$
\begin{aligned}
& \text { - } 1 \text { - تمهــيد } \\
& \text { r-1 العمليات الثنائية } \\
& \text { r-1 الجداول والعمليات الثنائية } \\
& \text { خاصة الإبدال. } \\
& \text { (} 1 \\
& \text { العنصر المحايد } \\
& \text { V- } \\
& \text { 人 - } 1 \\
& \text { 1-1 الزمّمر الدائرية }
\end{aligned}
$$

1 - . 1 النظام ذو العمليتين الثائيتّين.

تم
سـبق الك التعـرّف على التطبيقات ، ودأيت أن علاقة كالممكُّلة سهمياً بالشكل (1-1
 وقد سبق أن سمئنا المخطط السهمي بيان التطبيق ، ذلل البيان الذي سنعبُر عنه بالمجـوعة رمن الواضح لديك أنَّ مدى هذا التطبيق هو المجموعة وكذالك فـابنٔ : ر :
 برتبـط به مقابله ر (س) = م

$$
\|=r+\varepsilon \times r=(\varepsilon) \text { يرتبــط بـ }
$$

وبصودة عامةّ ، فإنكّ تستطيع تعريف تطبيق بافتراض :
مجموعة تعتبرها مجـالًا ، ومجموعة أخــرى ، قد تكنَ الأولى نفسها ، تعتبرها مجالاً مقابلاً ،
وبيان (أو قاعدة للربط بين المجموعتين) على أن يكن :
لكل عنصر من المجال مقابل واحد (وراحد فقط) في المجال المقابل . فـلو أردت مثلأ ، تعريف تطبييق مجاله سح =

 ثــــــــلـ

تعال نبحث عن نمط آخر من التطبيقات :

$$
\{\text { لتكن لدينا المجمعة سح }
$$

فيكن الجداء الديكارتي: سح × سح فلو اتُّذذت المجموعة سح × سح مجالأ لعلاقة مجالها المقابل سح ،

$$
\text { بالشكل (} 1 \text { - }) \text { : }
$$

纹

$$
\text { ثـــــكل (})
$$

ولو رجعت إلى تعريف التطبيق وهو :
״ لكل عنصر (وهو هنا ندج مرتب) من المجال ،مقابل واحد فقط في المجال المقابل " لوجدت أن
 تطبيقاً لان العنصر (ب ، P) من المجال ليس له مقابل ، وكذلك العلاقة رِ ليست تطبيقاً لان العنصر
() له أكثر من مقابل .
تدريب (1-1)
 إيجـاد تقـابل منسح× سح إلى سح ؟ ولــاذا ؟ هل يمكن إيجـاد تطبيق متباين ؟ ولمـاذا ؟
r - العـمـلـيـات الثنـنائيـة
(1) إذا رجعت إلى ما تعلمـت في المراحل السابتة وما درجنا على تسیيت بالعمليات الاربع رهي

الجمع والطرع والضرب والتسـة على المعوعات العددية ، فإنل ستذكر أنٌ :

هجمعهها ، ننكت :

$$
r \longleftarrow(, ~ r)(q \text {, } 9 \text {, } q \text {, } 0)
$$

وبصودة عامة: لكل (P ب ب (

 التطبيو (أد مذه العملبة) على النحو الاتّي :

* وكـذلت فـإنَ التطبيت

$$
(r-1) \begin{cases}v \longleftarrow v:- \\ v-p \longleftarrow & (ب, p)\end{cases}
$$

 (

* وبالمثل فإن التطبيق :

$$
(r-1) \quad\left\{\begin{aligned}
\dot{u} \longleftrightarrow & \dot{u} \times \dot{u}: \times \\
ب \times p & (ب \times p)
\end{aligned}\right.
$$

هــو عمـلية الضرب المعرًّـة على مجمـوعة الأعـداد النسبـية ن والتي تقن كل ند مرتـب (P ، ب) (
ضرب p رَ ب أو جداءp p ب ب)

$$
(\varepsilon-1) \quad\left\{\begin{aligned}
{ }^{*} \tau \longleftarrow & { }^{*} \tau \times{ }^{*} \tau: \div \\
ب \div P & (\varphi, P)
\end{aligned}\right.
$$

(حيث ح
 (وهو ناتع قسمة P على ب)

$$
(0-1) \quad\left\{\begin{aligned}
\dot{u} & \longleftarrow b \times b: \div \\
ب \div p & \longleftarrow(ب, p)
\end{aligned}\right.
$$

 (P) العملية ״

$$
\text { b } \ngtr \frac{\varepsilon}{0} \text { ب بينما } b \text { x } \ni(0, \varepsilon)
$$

لعلك تلاحظ أنه في كل من التطبيقات (العمليات) (1-1) إلى (- ع ع) كان المجال هو

الجداه الايكارتي للمجوعة المعرُّ عليها التطبيق والمجال المقابل مو الجموعة نغسها (رنعبرُ عن ذلل بترلنا إن جميع نواتج العطلبة تنتي إلى المجوعة نفسا المها)

 ! المى المجوعة نفسها).
تدريب ((r-1)
 المتابل ، إن أمكن ، مو المجموعة نسها
(1) (1) علية الجمع على صح
(Y) علبة الطرع على ط
(
(r) إن التطبيق الجديد اللي تعرْنت عليه من خلال الاومثة السابةَ والني مجاله الجداء الايكارتي

فالتطبيق ((1)) مو عملية ثنانية عى ل
والتطبيق (($)$ ($)$) مو عملية ثنائبة على صه
والتطبيق (r-1) مو عملية ثنّنّية على ن

أتـا التطبيق الذي مجاله سح×س (فابنا لاندعره عملية ثنائبة على س، نمـلًا ، التطبيق :

وعليه نستطيع تقديم تعريف العملية الثنائية :
تعريــف (1-1) :

إذا كانت سح مجموعة غــير خـالية ، فإنــنا نسمي أي تطبيـق مجـاله الجـداء الديكـارتي

تدريب (1-r)

أي العلاقات الواردة في التدريب (1 -

 كها سيظهر في الامثة القادمة إن شاء الله
تعريـفـ((Y-1) :

إذا كانتسحمجوعة غير خالية وكان * تطبيقاً مجـالهس ×سحومجاله المــابل ع فإنتا نعبرّر
 النزج (سح ، *) يُعىى نظاماً ذا عملية ثنائية أر نظاماً مغلقاً
(1) تكافُو العبارات الآتــية : (P) * (وتقرأ العملية نجـمة) عملية ثـنائــــة معرفة على سح
(ب) (س ، *) نظام ذو عملية ثنائية (ج) (س ، *) نظام مغلق
(Y) تكافؤ العبارتين : " (سح ، *) نظام ذو عملية " و' " * تطبيق مجاله سح × سح ومجاله المقابل مجموعة ما ، ع ، قد لا تكن محتواة في سح " ،

$$
\begin{aligned}
& \text { مثـال (1-1) } \\
& \text { (1) إذا كانت * معرْة على ن كما يلي } \\
& \frac{ب+P}{r}=ب * P \\
& \text { فبان (ن ، *) نظام مغلق ، لان } \\
& \text { (Y) إذا وضعنا المجمعة ك مكان المموعة ن في (} 1 \text { () فابننا نلاحظ أن (ک ، *) نظام ذو } \\
& \text { • } \neq \frac{0}{r}=\frac{r+r}{r}=r_{*} r: \text { : عملية ولكنه ليس نظاماً مغلقاً ، فمثلا } \\
& \text { مثـال (r-1) (} \\
& \text { إذا كانت س }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (() يمكن تعريف عملية ثنائية ه على سح كما يـلـي } \\
& 1=r \otimes r, 1=1 \otimes r, r=r \otimes 1, \quad 1=1 \otimes 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Y) يمكن تعريف عملية ثُنائية أخرى على سح ، ولتكن * ، ، كما يلي } \\
& 1=r * r, r=1 * r, r=r * 1,1=1 * 1 \\
& \text { * 1 * r = Y * احظ أن (س ، *) نظام مغلق وأن } \\
& \text { تدريب (1-1) } \\
& \text { عيِّن عمـليـة ــــنائية على سح في المثال (} \\
& \text { في ذلك المـــال } \\
& \text { مثـال (} \\
& \text { لنعرف عملية ه على ث } \\
& { }^{r} ب+{ }^{r} p=ب \otimes p
\end{aligned}
$$

إن (ل ، \&) نظــام مغـلق ، لان
كلين هو عدد كلي
وتجـدر الإثــارة هــنـا إلى أن العــلية الثنانية ه ه في مذا المــــال مـرنـة بالتـاعدة :

$$
r+{ }^{r} p=ب \otimes p
$$

بينما العمليتان * . \& في المثال (
مثـال (1-؟) :

لتكن سر مجموعة المجموعات الجزنية للمجموعة [P ، ب ، حـ) ، أي أن :

$$
\{\{\sim, ب, p\} \cdot\{\sim, ب\} \cdot\{\sim, p\} \cdot\{ب, p\} \cdot\{\sim\} \cdot\{ب\} \cdot\{p\}, \phi\}=\sim
$$

(1) لاهـظ أن اتحـاد كل عنصرين من عنـاصـرسر عنمر ينتمي إلى سه أیي أن عملية الاتحاد
"

$$
\begin{array}{r}
\{ب\}=\{ب\} \cup \varnothing \cdot\{\sim, P\}=\{\sim, P\} \cup\{P\} \\
\cdot\{\sim, ب, P\}=\{\sim\} \cup\{ب, P\}
\end{array}
$$

وتدعى سی مجموعة المجموعات الجزنية الفعلية للمجموعة [P ، ب ، حـ ا

مثـال (1-0-1) :
إذا كانت ط =
لاي عددين س ، ص \ni ط فإن :

س هص = القاسم المشترك الاكبر، اللعددين س ، ص . فمثلاُ
($1=1 v \Delta T_{0} \cdot 19=19 \Delta r \wedge, 0=10 \Delta r_{0}$
تدريب (1-0)
(P) بالنسبة للعملية ه في المثال (1 - 0) أكمل مايلي $\ldots=\operatorname{Iv} \Delta$ i.r.... $=$ ir $\Delta r 7$
(ب) ناقشَ محة كلّ من العبارتِين التاليتَين :
 (Y) إذا كان (س ، *)) نظامأ ذا عملية فابن (س ، *) نظام مغلق
تــمـارين (1-1) :
(1) إذا كانت ه عملية ثنائية معرفة على هص كما يلي :

س

$$
\begin{aligned}
& (M-) \otimes \vee, \vee \otimes(1 r-), r \otimes \varepsilon, \mathcal{Q} \otimes r(i) \\
& 11=r \text { (}{ }^{(1)}
\end{aligned}
$$

 ir ∇ r7, $10 \nabla 10,7 \nabla$ ir

هل ∇ عملبة ثنائية على ط ؟ و ولماذا ؟
 على المجموعة ط فاحسب قيمة

$$
T=0, \rho 0,0=\varepsilon, \nu 0, \varepsilon=0, \rho^{\varepsilon}, \varepsilon=\varepsilon, \rho^{\varepsilon}(i)
$$

حيث د, ترمز العمعلية على سح•
(0) هل النظام (ك ، -) مغلق ؟ , بلاذا ؟

$$
\text { (1) عرگّ خمس عمليات ثنائية مختلة على المجموعة } 9 \text { ، } 9 \text {) }
$$

r-1 r-1 الجداول والعـمليّات الثنائية
إذا كانت المجموعة التي عُرُفت عليها عملية ثنانية تكَن من عدد محمد من العناصر ، فإنه يمكن

r 1 \otimes r 1 1 1 1 r
$(1-1)$ -

بالجـدل الآتي :
 التي عرفت عليها العملية الثنائية
مثـال (1-9)

إذا كانت سح = \}
لكل س ، ص \ni سحفإن س * ص = القاسم المشترك الاكبر اللعددين س ، ص.
فآبت أن العدلية * ثنائية على سح
: الحل
نتظُم الجمل (Y - 1) الذي سيعطينا التاسم المشترك الاكبر لالي عددين من سر.

نلاحظ أن (س ، *) نظام مغلق ، حيث إن س * ص Эس لكل س ، ص Э س~

ε	r	r	1	$*$
1	1	1	1	1
r	1	r	1	r
1	r	1	1	r
ε	1	r	1	ε
$(r-1)$ blu				

إن * عملية ثنانية على
مثـال (V-1)
أنشئ جـول عملية النظام (س (إذا علمت أنسح =
 : الحـل

r	r	1	$*$
1	1	1	1
\wedge	ε	r	r
$r v$	q	r	r

الجـدل (
وحـيث إن الاعــداد : :

$$
, ~ q=r r=r * r, \wedge={ }^{r} r=r * r
$$

rV = ${ }^{r} r=r * r$ فإن العملية * ليست ثنائية على سر، أي أن (س، *) نظام غير مغلق . . بـــــول (لاحظ أنه يكفي لكنَ النظام (س، *) غير مغلق ظهود عدد واحد فقط بحيث : :

إذا كانتسح= \} $\{\{Y, I\} \cdot\{Y\} \cdot\{1\}, \varnothing\}=$ س يمكنل أن تحقق من أن عملية الاتحـاد $ل$ هي عملية ثنايةي على سی, وذلك بإنشاء جدول هذه العملية . حـال ذلـك ، ستصمل على الجـــدل (1- ع)

وأنص
 نظــاماأ مغــــاً أم
(() الجلهل (

r	r	1	\cdot	$*$
r	r	1	\cdot	\cdot
r	r	\cdot	1	1
1	\cdot	r	r	r
\cdot	1	r	r	r

جــــول (1)
(P) *
$P=\cdot * P=P * \cdot$: . $=P * P$ كما أن
P* *
ماذا تلاحــظ عن القطر الذي طــرفه * للمــربع الذي كتب
فيـ الجـــل (1-0) . ؟

منـال (1-9)

r	r	1	\cdot	\oplus
r	r	1	\cdot	\cdot
\cdot	r	r	1	1
1	\cdot	r	r	r
r	1	\cdot	r	r

كها يمكن تعريف هذه العملية الثنائية على النحو الآتي :

جــدول (1-1 (7)

$$
\text { † } P
$$

$$
\begin{aligned}
& \text { تدريب (1-1 (1) } \\
& \text { (1) في المثال (}
\end{aligned}
$$

مثـال（ 1 1 1 ）：（جـمع السـاعات）
إذا كانت الساعة تشير الآن إلى الرابعة فإنه بعد ثلاث ساعات تشير إلى السابعة أي أن ：

$$
v=r \text { 田 } \varepsilon
$$

وإذا كانت تشير إلى التاسعة فإنه بعد خمس ساعات تشير إلى الثانية ، أي أن ：

$$
r=0 \text { 田 }
$$

رإذا كانت الساعة الرابعة فإنه بعد ثمان ساعات نجد أن الساعة تشير إلى الثانية عشرة ، أي أن ：

$$
I r=\wedge \text { 田 }
$$

وإذا كانت الساعة الثانية عشرة فابنه بعد ست ساعات نجد الساعة تشير إلى السادسة أي أن ：

$$
T=7 \text { 田 } 1
$$

وإذا كانت الساعة الثانية عشرة فإنه بعد اشنتي عشرة ساعة نجد أن الساعة تشير كذلك إلى الثانية
عشرة، أي أن : Ir

وهكذا يمكن الاستمرار بهذه الطريقة ، وسوف نجد أن عملية جمع الساعات عملية ثنائية معرفة
 وهي تخضى اللقاعدة الآتية ：

$$
\begin{aligned}
& \text {, } \mid r \geqslant ب+P \text { إذا كان } \\
& \text {. } 1 r<ب+P \text { ب }+P \text { إ }
\end{aligned}
$$

لنآخذ المثتP ب حـ المتطابق الاضضلاع الموضح في الشكل（ 1－ع ع ）، حيث＂و＂ملتقى الأعمدة النازلة من رندس المثن على الاضلاع المقابلة
 بزايا ：صفرُ（ آ ．． الاتجاه الموجب（ اني في عكس اتجاه حركة عقارب الساعة ）

فإنتا نحمل على الاوضاع الآتية للمثثP ب مـ
 -㘶.

لعلك تلاحظ أن كلأ من د وهي معرفة كالآتي :

حيث وضقنـا صودة كل عنمر تحته في التطبيق المتعلق به ، فمثلاً :

$$
\left(\begin{array}{lll}
\sim & ب & p \\
ب & \dot{p} & ح
\end{array}\right)=\left(\begin{array}{ccc}
\vec{\sim} & ب & p \\
(\rightarrow)_{r} & ()_{r} & (p)_{r}
\end{array}\right)={ }_{r}
$$

وإذا فرضنا أن J ل على الترتيب فإننا نحصل على الاوضاع الآتية للمثت

المثلث بعـد التناظر
المثل بعـد التناظر
 حول ب ب,

Y
 وهي معرفة كالآتي

حيث وضعنا صودة كل عنمر في التطبيق المتعلق به تحته
 ه على المجموعه سـ بالجدلل الآتي :

$$
\text { جــل (} v-1
$$

واضح من الجدلل أن العملية ه عملية ثنائية على المجوعة سح

$$
\left(\begin{array}{ccc}
\sim & ب & p \\
(\rightarrow), J \circ_{r} & (ب), J \circ_{r} & (p), J \circ_{r}
\end{array}\right)=J_{1} \circ_{r}
$$

 لتطبيقين ل, ، د ع على الترتيب)

$$
\begin{aligned}
& \text { טحيث إن در } \\
& \text { د } \\
& \text { د }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تدريب (V - } \\
& \text { في المثال (1 - } \\
& \text { (1) أوجـد كلاْ من المـود الاتـية : } \\
& \text { ل ل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Y) أوجـد كلأ من الصـدر الاتـــة } \\
& \text { د د ل ل, (} \\
& =(\cdots, P)=1 \\
& \text { § (Y) • (} \\
& \text { تــــــاريـن ((}
\end{aligned}
$$

1 - أى الجداول الاتية يمثل معلية ثنانية ملى المجمهة

r	r	1	Δ
r	r	1	1
0	ε	r	r
r	r	r	r

r	r	1	\cdots
r	r	1	1
1	1	r	r
1	1	r	r

r	r	1	θ
r	r	1	1
1	r	r	r
1	r	r	r

فمثّل هاتين العمليتين في جلولين .

العملية الثنائية 丹 كالآتّ
. فالمطلوب : مثِّل هذه العملية في جلقل (P)
(ب) أكب جدولا يمثل العملية الثنائية الواردة في المثال (- . 1)
قاسن بين الجدولين
ع - عرفنا على المجموعة صح العملية الثنائية \bigodot كالآتي
IT ب
والمطــــلوب :
. مثِّل مذه العملية في جدل (P)
(ب) أوجد مجموعة الحل للمعادلات الآتية :

$$
\begin{aligned}
r=m \rho(Y) \quad & =m \odot r(1) \\
1 & =m \odot(r)
\end{aligned}
$$

0
س * ص =
(i) i i i

$$
\frac{0}{r} * r \frac{1}{\varepsilon}(r) \quad \frac{1}{\circ} * \frac{1}{r}(r) \varepsilon * r(1)
$$

(ب) أثبت أن العلية * ليست تطبيقاً متبايناً
1 - لنعتبر العملية الثنائية * المعرفة على المجوعة ع على النحو التالي :
「

- أو (i)

$$
\begin{equation*}
\left(\frac{1}{r} * r\right) * r(r) \quad \frac{1}{r} *(r * r) \tag{1}
\end{equation*}
$$

(ب) أثبت أن * ليست علية ثنائية على الجموعة ط

$J=J 0_{r}(r) \quad J=0_{r} 0^{\prime} J(r), \nu=J 0^{\prime} J$
: 1
نلاحظ في عملية الجمع على المجموعة ل $r_{0}=I v+\Lambda=\lambda+I v, ~ \lambda=r+0=0+r$

وكذلك بالنسبة لعملية الضرب على ك ناحظ أن

$$
I r T=I V \times \Lambda=\Lambda \times I V, I 0=r \times 0=0 \times r
$$

ل

العملية ، وبصودة عامة

تعريــغ(r-1)

نتول إن إلعملية الثائية * على المجموعة سح إبدالية (أو تبديلية) إذا كان : *
ومد نترل إن النظام (سح ، *) إبدالي إذا كانت * إبدالية
وتكون العملية * المعـرفة على

$$
\text { بحيث :P* } P \text { * }
$$

ارجـع إلى الاهــــة (r-1) (
(
العمليات الواردة في هذه الاممثة إبدالية أم لا

لعلك توصلت إلى أن جميع العمليات الثنائية الواردة في هذه الامثلة إبدالية باستناء :
 الـواردة في الــــال (1 () فهي ليست إبدالية بالإضافة إلى كونها ليست عملية ثنائية كما

أسـلفنا ، ذلـك لأن

$$
(\sim \ni ب \cdot p) \cdot p * ب=p^{p} \neq ب p=ب * p
$$

تدريب) (1 1)

$$
\begin{aligned}
& \text { (1) بيِّ هل عملية الطرح المعرفة على ع عملية ثنائية ؟ وهل هي إبدالية ؟ } \\
& \text { (Y) بيّن هل النظام (ع ، -) مغلق ؟ وهل هو إبدالي ؟ }
\end{aligned}
$$

الحقيقية الموجبة ح

$$
{ }^{+} \tau \ni \text { ب }
$$

احسب
هـل تستنـتّع من ذلـك انن (
عــامة ¢ ولمازا
(ع) استعن بالجدول (1-0 0) وتحقق أن العملية * التي يمثلها إبد الية
1 - 1 خاصة التجـميع :
بدراسة عمليتي الجمع والضرب على المجموعة ك نلاحظ ان

$$
\begin{aligned}
1 . & =(0+r)+r=0+(r+r) \\
, r & =(0 \times r) \times r=0 \times(r \times r) \\
, ~ 1 \varepsilon & =(\varepsilon+r)+v=\varepsilon+(r+v) \\
, \wedge \varepsilon & =(\varepsilon \times r) \times v=\varepsilon \times(r \times v)
\end{aligned}
$$

أي أن

$$
\begin{aligned}
& (\sim+ب)+p=\sim+(ب+p) \\
& \cdot(\sim \times \text { ب }) \times p=\sim \times(ب \times p)
\end{aligned}
$$

وبصفة عامة نقدم التعريف الآتي
تعريــــ (1- ع) :

نقل إن العملية الثنائية * على المجموعة سه تجميعية إذا كان
(
(سح *) (إنه تجميعي

بحيث : (P* ب) *

مثـال (
لنعرْت العطلية الثنائية * على المجموعة صح كما يأتي

* P
, واضح أن العدد الناتج (P+ + - هـ) وهذا يعني أن * عملية ثانية على صر إذا كان ح

$$
\Delta-+ \text { + }+ \text { + + }+ \text { + })=
$$

$$
\text { هr } r \text { - + + }+ \text { = }
$$

ومن جهة أخرى

- $-(\sim *)+P=(\sim *$ ب $) * P$
 $\rightarrow r-{ }^{+}+P=$

وبمقارنة (1) ، ()) نجد أن

أي أن * عملية ثنائية تجميعية
مثـال (1 1 (1)
أثبت أن النظام (ك ، ه) مغلق وغير إبدالي وغير تجميعي ، إذا علمت أن ه معرفة على ك كما يلي

س ه ص ص = r

هيث إنه لكل عددين س ، ص \ni ك ف فإن إن (ك ، ه) نظام مغلق
 س $v=1 \times r+r \times r=1 \otimes r=m \otimes \theta$
إذ
 $r \otimes(r \otimes I)=\varepsilon \otimes\left(\begin{array}{l}\text { (}) ~\end{array}\right.$

$$
r \times r+(r \otimes 1) \times r=
$$

$$
\begin{equation*}
9+(r \times r+1 \times r) \times r= \tag{}
\end{equation*}
$$

$r_{0}=$
$(r \otimes r) \otimes I=(\varepsilon \otimes) \otimes$
$(r \otimes r) \times r+1 \times r=$
$(r \times r+r \times r) \times r+r=$
(r)

そ =
من (
تدريب()
(1) ارجع إلى المثال (1 - ا 1 () وأجب على الانسئلة التالية :
. أحسب 0 (P)
(ب) أحسب) (
 إبدالية وغير تجميعية على ث ؟ بلماذا ؟
(Y) بين أن النظام (

مثـال (
إذا عرفنا عملية Δ على المجموعةصح على النحو الآتي
لكلPr ب ب ب

فابحث عمًا إذا كانت ه إبدالية ؟ تجميعية؟

: الحـل

حيث إن إن
$\Delta r+(ب \Delta P) r=\Delta \Delta(ب \Delta P)$
$\rightarrow r+(ب r+P r) r=$ $\rightarrow r+\varphi \varepsilon+P \varepsilon=$
$(\Delta \Delta ب) r+P r=(\Delta \Delta ب) \Delta P$ $(\Delta r+ب r) r+P r=$
$ح \varepsilon+ب \varepsilon+p r=$
فمن (() ، (Y) نستنتج أن ه عملية غير تجميعية ، لان $(\rightarrow \Delta$ ب) $\Delta P \neq \sim \Delta(ب \Delta P)$
(1. 1) ندربس

ناقش صحة العبارة الآتية
" لـيس من الضـريري أن تكن العملية الإبدالية تجميعية ، والعكس محيع ، أي أنه ليس من الضصري أن تكــن العملية التجميعية إبدالية " للاجـابة على ذلك استـفد من الثـالـين (11-1 (1) (1) (1)

$$
\begin{aligned}
& \text { (1) اذكر ما إذا كانت كل من العبارات الآتية صائبة أم لا واكتب الصواب إذا كانت خاطئة : } \\
& \text { (i) (i) عملية جمع الساعات عملية ثنائية غير إبدالية } \\
& \text { (ب) عملية جمع الساعات عملية ثنائية تجميعية } \\
& \text { (ح) عملية الضرب على مجموعة الأعداد الكلية إبدالية وغير تَميعية } \\
& \text { () عملية الضرب على مجموعة الأعداد الطبيعية غير تجميعية وإبدالية } \\
& \text { (هـ) الجمع على مجموعة الأعداد الكلية علية إبدالية وتجميعية } \\
& \text { (و (الحملية الثنائية في المثال (1 - } 11 \text {) غير إبدالية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { إبدالية }\{r, ~ Y, ~ l\} \\
& \text { (「) لتكن ® عملية ثنائية معرفة على المجموعة ط على النحو الآتي } \\
& (ب+P) p=ب \otimes \\
& \text { • (} 7 \text { (} \ddagger \text { (} P \text {) } \\
& (\varepsilon \otimes r) \otimes(v \otimes \otimes), 7 \otimes(\varepsilon \otimes r)
\end{aligned}
$$

(ب) مل العملية الثنائة ه إبدالية ؟ تجميعية ؟ رلاذا ؟ .

(£) إذا كانت ه عملية ثنانية على المجموعة ط معرفة على النحو الآتي

$$
\xrightarrow{p}=ب \otimes
$$

فأجب عما يلي : -
$(1 \otimes r) \otimes(r \otimes v) \cdot(r \otimes r) \otimes 0, r \otimes(r \otimes 0)(P)$
$(r \otimes 1) \otimes(V \otimes r)$
(ب) هل العملية الثنائية ه غ إبدالية ؟ تجميعية ؟ ولماذا ؟
(0) إذا كانت ه عملية ثنائية معرفة على المجموعة هـ على النحو الآتي : -

$$
\begin{aligned}
& \text { س ه ه } \\
& \text { فهل مذه العملية إبدالية ؟ تجميعية ؟ ولماذا ؟ }
\end{aligned}
$$

$$
\begin{aligned}
& p=p+\cdot=\cdot+p \\
& p=p \times 1=1 \times p
\end{aligned}
$$

ونلاحظ أنه بجمع الصفر مع العدد P ، فإن الناتح يكن P P ، وكذلل بضرب الواحد الصحيح في العدد P ، يكن الناتج P . ولهذا فابن الصفر يسمى عنصرأ محايدأ لعملية الجمع كما يسمى الواحد عنمراً محايداً لعملية الضرب ويمكن تعميم المفهوم بالتعريف التالي : -

$$
\text { تعـرــف(} 1 \text { - 0): }
$$

العنمر م في المجموعة سح المعرفة عليها عملية ثنائية * يسمى عنصرأ محايداً
بالنسبةلهذهالعملية إذا كان :

$$
\sim \nexists P \text { Pلك }
$$

مثـال (1-10)

إذا اعتبرنا عمليـة جـمع السـاعـات الموضــة في المثـــال (1 - •1) نــاحظ أنـه لأي $:\{\mid Y, \|, 1 \cdot, 9, A, V, Y, 0, \varepsilon, r, Y, 1\} \geqslant P P$

$$
P=P \oplus I r=I r \oplus P
$$

أي أن : Yا مو العنمر المحـايد لعملـية جمع الساعات .
مثـال (17-1)
أثبت أن عملية الطرح على الجموعة صح ليس لها عنمر محايد .
: الحـل
نلاحظ أن الصفر لا يمكن أن يكن عنصراً محايداً لهذه العملية الثائية لان :

$$
\text { P } P=\text { - - } P
$$

وإن وجد عنصر محايد ، م مثلا ، بالنسبة لهذه العملية الثانية فإنه يجب أن يحقى :

أن م = صعراً ، ومن المعادلة الثانية م Pr

حيث P أي عنمر من صح، ومذا غير ممكن

إذن لا يوجد عنمر محايد بالنسبة لهذه العملية الثنانية

$$
\text { تدريب (1-1 } 1 \text {) }
$$

$$
\text { الجــول (} 1 \text { - }
$$

(Y) في الجدل (1 (- 0) عين العنصر المحايد فيسحبالنسبة للعملية

عند دراستنا لعملية الجمع على المجموعة هى وجدنا أن لهذه العملية الثناية عنصرا محــايدأ هو الصفر

$$
\begin{aligned}
& \text { ومن المعلوم أن لكل عنمر } \\
& \text { + }+ \text { + }
\end{aligned}
$$

P - = بمن ذلك نستنتج أن ب

أي أن لكل عنصر في المجموعة صح يوجد عنصر آخر في المجموعة هـ بحيث أن مجموع هذين العنمرين يساوي الصفر الذي هو العنمر المحايد في هذه المجموعة بالنسبة لعملية الجمع .
 ويصورة عامة نعرُّ العنمر النظير لعنمر آخر بالنسبة لعملية ثنائية بما ياتّي

$$
\text { تعريـف (} 1 \text { - 7) : }
$$

 الثنائية * إذا كان

$$
\begin{aligned}
& \text { عـادة يـرمــز لنظـير P بالرمــز }
\end{aligned}
$$

متــُ (I V 1)

إذا أعدنا اللظــر في المـــال (1-9) فإنــنا نلاحظ أن الصفر هو العنصر المحــاد اللعملية \oplus وأن لكل عنصر من عناصر المجموعة صى نظــير حيث نجـد

إذا أعدنا النظر في المـال ((- ع) فإنتا نلاحظ أن
المجمـوعة الخالية ه هي العنصـر المحـايد بالنسبة لعملية الاتحـاد .لأنه إذا كانت

$$
\text { صحمجموعة جزئية من المجموعة }\}
$$

(r) إن العنمر المحايد ه هو العنصر الوحيد الذي له نظير إذا فرضنا أن صى

هو نظير العنصر صح ، نحمل على :

$$
\varnothing=r_{r}=\imath^{\nu}
$$

مثـال (19-1) :
المجمعة سه =
مجموعة المجموعات الجزئية للمجموعة سـ لانه لأي مجموعة جزنية صv ذسحيتحقق :

$$
\begin{aligned}
v \Delta & =\{\sim ، ب \cdot p\} \cap v \\
v & =v \cap\{\sim ، ب ، P\}
\end{aligned}
$$

(
إذا فرضنا أن هص, د سحهو نظير للعنمر صی, ، فإننا نحمل على

$$
\begin{aligned}
& \text { • }\{\sim \cdot \mathrm{c} \cdot \mathrm{P}\}=\text { r }
\end{aligned}
$$

 فإن :

مثـال (r.-1)
إذا كانت ه عملية ثنائية معرفة كما يلي :

فادرس خواص العملية \$ من حيث :
(1) كونها إبدالية أم لا ، تجميعية أم لا

- (Y) وجود عنمر محايد في
 (「) وجود نظير لكل عنمر في ح"

$$
\text { (1) } \rightarrow p \frac{1}{\varepsilon}=\rightarrow\left(ب P \frac{1}{r}\right) \frac{1}{r}=\rightarrow \otimes\left(ب \frac{1}{r}\right)=\rightarrow \otimes(ب \otimes P)
$$

$$
\left(\rightarrow ب \frac{1}{r} \times P\right) \frac{1}{r}=\left(\sim ب \frac{1}{r}\right) \otimes P=(\sim \otimes ب) \otimes P
$$

$$
\rightarrow ب \frac{1}{\varepsilon}=
$$

من (1) ، (Y) ينتج أن :
أي أن ه تجميعية .
(Y) لو فرضنا أن م

وحيث إن \$ إبدالية فإن المساواة الأولى محققة ، ونكتفي بكتابة

ولناخذ الاولى مثلاُ ، التي تكب بالصمدة :
$r=p \Longleftarrow P=p \cdot p \frac{1}{r}$

$$
\begin{aligned}
& \text { أي أن ه إبدالية }
\end{aligned}
$$

إذا كان $r=p \otimes{ }^{1-p}={ }^{1-p} \otimes p$

$$
r=P \otimes{ }^{1-p} \text {, } 1 \quad r=1-p \otimes p
$$

لكي نحمل على قيمة p $\frac{\varepsilon}{p}={ }^{1-p} \quad \varepsilon={ }^{1-p} p \Leftarrow r={ }^{\prime} \quad{ }^{-p} p \frac{1}{r}$ إذن : فلكل عدد حقيقي

تدريب (Ir-1)

$$
\text { (1) في المثال (} 1 \text { - r) أرجد : }
$$

r-TV
(ب) ()
أعد حل المال (1-r -) بعد وضـ ن* مكان ع" .

(£) إذا كان p
تــمـارين (1-8)

(1) أرجد العنمر المحـايد للعملية الثنانية (P)

$$
\begin{aligned}
& \text { الحو الآتي : P P } \\
& \text { فأجب عما ياتّي : - }
\end{aligned}
$$

> (ب) أوجد نظير كل عنصر من عناصر صح بالنسبة للعملية
> (ح) حل المعادلات الآتية

$$
\begin{aligned}
& r=س \oplus^{1-r}(\varepsilon) \quad=\omega \oplus^{1-\varepsilon(r)}
\end{aligned}
$$

(Y) اذا اعتبرنا صع =
P P ب = باقي قسمة P ب على ع

فأجب عن الآَتي
(P) مثل هذه العملية في جدل
(ب) أوجد العنصر المحايد بالنسبة لهذه العملية
(ح) أوجد نظير كل عنصر إن وجد بالنسبة لهذه العملية (د) أوجد مجموعة الحـل للـمعادلات الآتية

$$
\begin{equation*}
r=m \odot^{1-r} \tag{r}
\end{equation*}
$$

- $=$ r (
 ل

أوجد عملية على مجموعة سح لها عنصر محايد ولا يوجد لأي عنصر من المجوعة سح '
باستثاء العنصر المحــايد ، نظيـــر
(0) (P) أوجد العنصر المحايد بالنسبة للعملية * المعرفة على مجموعة الأعداد الكية ك كما يلي

$$
\text { ب } P+\text { ب }
$$

(ب) إذا كانت العملية الثنائية السابقة معرڤّة على المجوعة ط فهل يوجد لها عنصر محايد ؟
(7.) أثبت أن العنصر المحايد م للعملية الثنائية على مجموعة ما هو نظيـر نفسه

ا ـ ـ 1 الزمرة وخـواصها :
رأينا في البنود السابقة أن بعض الانظمة قد تكن له خاصًّة معيّة أو أكثر (مثل خامّة : الانغلاق والإبدال والتجميع وجود العنمر المحايد وجود نظير لكل عنمر) . ويكسب النظام أممية
 دود باذذ في كشف أسرار جذد كثيرات الحدود في أوائل القن التاسع عشر الميلادي ، بعد أن ينس علماء الرياضيات من إيجاد قانون عام لحل معادلة الدرجة الخامسة أسوة بقوانين المعادلات من

الارجة الثانية إلى الرابعة . كما أن للزمرة دواً بارذاً في مياغة قوانين الفيزياء الحديثة .
لنآخذ النظام (صح ، +) فنجد أن :

فإن
(Y) كما أن + تحقِّق خاصة التجميع ، لانه لكل p ، ب ،
(+ + + +
(r) يوجد عنمر محايد فيصربالنسبة للعملية + هو الصفر ، لأنه : لكل

$$
\cdot p=p+\cdots=\cdot+p
$$

(() وكذلك يوجد نظير (معكوس) فيص لكل

$$
\text { . }=p+(p-)=(p-)+p \text { y } p-={ }^{1-p}
$$

(ص ، +) بقولنا إنه نظام مغلق وتجميعي وبه عنصر محايد ولكل عنصر فيه نظير .
تعريف (V-1)
نققل إن النظام (س ، *) زمرة (أو اختصاراً إنسرزمرة) إذا كان مغلقاً وتجميعياً
وبي عنمر محايد ولكل عنصر فيه نظير ريا
وإذا كان (س، *) نظاماً إبدالياً بالإضافة إلى كونه زمرة قيل إنسحزمرة إبدالية .

إن (صح + +) زمرة إبدالية ، لان المطلية + إبدالية ، كها نعلم .
 العدد 1 ، إلا أن النظير بالنـسبة لعـملية الضرب " • « غير موجود في صح (باسشنا. العددين + 1 , - 1) . فنظير العدد r , مثلأ يحقق المعادلة

$$
\begin{aligned}
& \text { r } \\
& \text { وهذه المعادلة لا تتحقق لأي عدد س } \ni \text { ص. }
\end{aligned}
$$

مثـال (r-1)
ادرس الانظظمة الآتية من حيث كونها زمرة إبدالية أم لا :

$$
\begin{array}{ll}
(+, * \sim)(r) & (\ldots * \infty) \\
(-, \tau)(\urcorner) & (+, \tau) \tag{0}
\end{array}
$$

: الهـ

$$
\begin{equation*}
\text { باستخدام التعريف (V - } 1 \text {) نجد أن : } \tag{1}
\end{equation*}
$$

النظام (هـ * ، .) مغلق وتجميعي وإبدالي وبه عنصر محايد هو ا ولكن لايوجد فيه نظير

* لكل إذن (صه* ، .) ليس زمرة

النظام (صح* + +) ليس مغلقاً ، فمثلأ ،
= صه - [• • . إذن (صح * ، +) ليس زمرة .

النظام (ن ، •) ليس زمرة ، لأن الصفر ليس له نظير بالنسبة لعملية الضرب " .
(\&) النظام (ن* ، .) مغلق وتجميعي وإبدالي وبه عنصر محايد هو 1 ولكل عنصر

 نظير جمعي مو （ النظام（ ع ،－）ليس زمرة ، فضلأ عن أن يكن زمرة إبدالية ، لكونه لا يحقق إلا خاصة الانغلاق فقط من التعريف（ 1 （ $V-1$ ）．فمثلا ：خاصة التجميع غير محققة لان

$$
r=(\varepsilon-r)-r \neq 0-=\varepsilon-(r-r)
$$

متال（r－1）

（

r	r	1	\cdot	العنمـر

) لا

باقي قسمة（P＋ب ）＋حـ على ع يساوي باقي قسمة P＋＋（ ب＋ج

والعملية $⿴ 囗 十$ هي عملية جمع الساعات ،كما أن $⿴ 囗 十$ عملية تجميعية لأنه لكل
 كذلك

العملية
قأخيراً لكل P P

نتـــرية (1-1) :

إذا كان (سه ، *) نظاماً مغلقاً وكان به عنصر محايد فإن هذا العنصر المحايد وحيد
البرهان :
لنفرض أن م ‘ م’ عنمران محايدان فيسحبالنسبة للعملية * فيكن لدينا :
(1)

م
من ((Y) ، (Y) نستتج أن م'= م وهذا يعني أن العنصر المحايد وحيد
نمــرية (

إذا كان النظام (سه، *) زمرة فإن لكل س \ni س نظير وحيد

لنفرض أن س'، سگ \ni گه هما نظيرا س بالنسبة للعملية * فيكن لدينا :
سَ = سَ * م ، ، حيث م العنصر المحايد في سه
=
= (سَ* () * س = خاصة التجميع
=
=
إذن نظــير س وحيد حيث وجـدنا سَ = سَ.

$$
\text { مثـال (} r \text { r-1) : }
$$

إذا كان النظام (سح ، *) زمرة فـّثّت أن للمعادلة :

$$
\begin{aligned}
& \text { * P } \\
& \text {. } *^{1-p}=\text { س }
\end{aligned}
$$

: الحـل
لابد لنا من إبّبات أمرين أولهما هو أن p -1 * ب حل للمعادلة وثانيهما أن هذا الحل وحيد . إن

* ${ }^{1-p}$ *P) $=\left({ }^{1-} p\right) * P$

خاصة النظير
ثانيًا :
بفرض ص \gg سلأ آخر المعادلة فيجب أن تحقِّق ص المعادلة فيكنن :

$$
\begin{aligned}
& \text { ب* }{ }^{1-} p=(\nu * P) *^{1-} p \Longleftarrow \quad \text { ب }=0 \text { * } p \\
& \text { س }=\sim *\left(P_{*}{ }^{1-} P\right) \Leftarrow \\
& =\quad \text { ص * }= \\
& =\quad \Leftarrow \quad \Leftarrow
\end{aligned}
$$

إن عملية تحصيل التطبيقات عملية تجميعية .
البـرهـان :
لنفرض انن

فيـكـون :

$$
\begin{equation*}
= \tag{1}
\end{equation*}
$$

د
(Y)

من (1) ، (Y) نستّتج أن
(د أيضـا ح ـ مما تقدم نستنتج أن التطبيقين :
(ر (

مثـال ()

ارجع إلى المثال (1-1) وأثبت أن النظام (س ، ه) زمرة غير إبدالية
: الحل
إن الجدل (

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

فان : د, ه س = س ه د, = س .
(£) لكل س Э سَ نظير س-' Э س ، حيث نجد :

$$
\begin{array}{llllll|l}
\text { س- }
\end{array}
$$

((س ، ه 0) نظــام تجميعي ، لان علية تحمبل التطبيقات „ه ه ، تجميعية ، حسب

$$
\begin{equation*}
\text { النظرية (} 1 \text {) } \tag{0}
\end{equation*}
$$

مـا تتدم نجد أن (س~ ، ه ه) زمرة غير إبدالية
نظريــ (1-8) :
 (($)$

البرهـان

$$
\begin{aligned}
& \text { ؟ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { خامة النظـير } \\
& \rightarrow * \text { * }=ب * \text { * } \Longleftrightarrow \\
& \text { خامة المحـايد } \\
& \rightarrow=\quad \Longleftrightarrow \\
& \text { (「) بـــرن برهـانه للطـالب كتـريب. }
\end{aligned}
$$

$$
\begin{align*}
& J=\omega \sigma^{1-r} \tag{r}\\
& \text { (Y) } \tag{1}\\
& \text { ر }
\end{align*}
$$

في التـمارين (1) إلى (•ا) عِّن الانظــمة التي تكن زمـرة ، واذكـر سبباً واحداً فقط عندما لا يكن النظام زمرة :

$$
\begin{equation*}
(+,\{1-1\}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(\cdot,\{1-, 1\}) \tag{Y}
\end{equation*}
$$

(س~ (+)) ، حيثسحمجوعة الاعداد النزجية
(
(+.\{.\})
(صح *
*
(v) (

$$
\text { P P P ب = باقي قسمة P ب على .1 لكل P ، ب } \ddagger \text { ب }
$$

P P P

P
\{ (
(II) آثبت أن كلاْ من النظامين (ن ، +) ، (
(IY) ناقش ما إذا كان كل من النظامين (ن ، -) ، (
(Ir) إذا كان (سه، *) زمرة فأثبت أن لكل معادلة

$$
\begin{aligned}
& \text { س * = = ب ، حيثP ، ب } \\
& \text { ' }{ }^{1} \text { - }
\end{aligned}
$$

 تسمى صحن مجموعة الأعداد المحيحة مقياس ن
 (\oplus P

نظرية (1
إن النظام (ه~ن، \oplus) زمرة إبدالية
البرهــان
(() (

يعني أن : (
(r) (

$$
\cdot P \oplus \text { ب }=\text { ب } \oplus \text { P }
$$

(() (
(لاحـظ أن

$$
\text { (إلن P P = P } \text {. إداليـة . }
$$

(0)

$$
\text { باقي قسمة (+ + + }+ \text { + } p \oplus p \text { p }
$$

= باقي قسمة ن على ن

$$
\begin{aligned}
& \text { الأعداد : . . } \\
& \text { (}
\end{aligned}
$$

ثانياً : لنعرفعمليةضرب ، نرمزلها بالرمز ج ، على المجموعة صهن كها يلي :

إن النظام (صحن • ج) مغالـق وتجمـيعي وإبدالي وبه غنمر محايـد ضــربي هو العـد 1 اعندما ن

برهان هذه النظرية يشبه تماماً برهان النظرية (1-0) . لذا يترك كمرين للطالب .
مثـال ((1-0)

 اللعنصر r
(P (ا المحايد الجمعي في النظام (صحی, ، †) مو الصفر ، حسب النظرية (1-0)

أنه في كل حالة

$$
\cdot=\varepsilon \odot r, r=r \odot r, r=1 \odot r
$$

$$
\begin{align*}
& \begin{array}{lllllllllll|l}
1 . & 9 & \wedge & \vee & 7 & 0 & \varepsilon & r & r & 1 & \cdot & \\
\hline 1 & r & r & \varepsilon & 0 & 7 & \vee & \wedge & 9 & 1 . & \cdot & \\
\hline
\end{array} \text { (ب) } \tag{1}\\
& \text { (P) المحايد الضربي هو العدد } 1 \text { ، حسب النظرية (} 1 \text { - } 1 \text {) } \tag{r}\\
& \text { (ب) لنفرض أن النظير الضربي للعنصر Y بو س }
\end{align*}
$$

$$
\begin{aligned}
& \text { P P ب = باقي قسمة P . ب على ن لكل P، ب } \\
& \text { نترية (7-1): }
\end{aligned}
$$

إذن لا يوجد حل المعادلة Y Y خربيللعنمر
بغرض أن النظير الضربي للعنمر r ب بو س يكن ：
تعريغ النظير $1=س \odot r={ }^{1} r \odot r$
وبحل هذه المعادلة فيصح نجد أن ：س＝r ت

تدريب（1－
（1）نققل عن عددين محيحين P ، ب إنهما أوليان فيما بينهما إذا كان القاسم المشترك

تعـريــن（1）

بالنسبة للعملية＊لكل من س ، سرا سـا كها يلي

* س (س مكدة ن من المرات)
سن = س * س *

س־ن＝（س－1）＝س－＇＊س－＇＊＊．．．＊س－＇（ س－1 مكرة ن من المرات ）
س＂＝م ، حيث م العنمر المـــايد في الزمرة سه

> مثـال (1)
> (() تحعق من أن النظام (ص~,
> 「r (ب)
> ${ }^{4} \mathrm{r}$ (- $(\boldsymbol{)}$
> ${ }^{4} r(P)$
> 「 r (1)

الحل :

(1) إن الجدل (

ε	r	r	1	\bigodot
ε	r	r	1	1
r	1	ε	r	r
r	ε	1	r	r
1	r	r	ε	ε

أما خاصة التجميع فمققة ، حسب النظرية (1 - 1) وأخيراً

إذن (صحهٌ ، •) زمرة إبدالية

تعريف (
$r \odot r \odot r \odot r={ }^{i} r(P)$
خاصـة التجميع
$(r \odot r) \odot(r \odot r)=$
^ ^ - ا ()
باذ 1 =
$r \odot r \odot r=r r(ب):$: وبالمثل
$r=r \odot \varepsilon=r \odot(r \odot r)=$

$$
\varepsilon=\varepsilon \odot \quad 1=\varepsilon \odot(\varepsilon \odot \varepsilon)=\varepsilon \odot \varepsilon \odot \varepsilon=「 \varepsilon(\rightarrow)
$$

$$
\text { تعريف (} 1 \text { () }
$$

$$
\text { تعريف (})
$$

$$
\varepsilon=r \odot r \text { ע } ₹ \quad \varepsilon \odot \varepsilon=
$$

تعريــف(1)

مجموعة غير منتهية فنقل إن (سح ، *) زمرة غير منتهية .
وعندما تكنسسزمرة منتهية فإنتا نرمز لعدد عناصرها بالرمز|سح|ونسميه رتبة الزمرة .
وحيث إن أي زمرة منتهية (س~ ، *) هي مجموعة غير خالية لوجود العنصر المحايد فيها فان

ر رتبة الزمرة (صv

عناصرها من قیى العنصر r r وذ r

$$
\begin{aligned}
\cdot r=r \odot \varepsilon=r \odot{ }^{r} r={ }^{r} r, \varepsilon & =r \odot r=r, r={ }^{r} r \\
1 & =r \odot r=r \odot{ }^{r} r={ }^{r} r
\end{aligned}
$$

$$
*_{0} \infty=\{1, r, \varepsilon, r\}=\left\{{ }^{\{ } r, r, r, r, r\right\}=\langle r\rangle
$$

$$
\begin{aligned}
& \varepsilon=\varepsilon \odot 1={ }^{r} r \odot{ }^{\varepsilon} r={ }^{7} r \\
& \text { لنآخـذ ₹ } \\
& \{1, \varepsilon, 1, \varepsilon\}=\left\{{ }^{\mathfrak{q} \varepsilon},{ }^{r} \varepsilon,{ }^{r} \varepsilon, \varepsilon\right\}=\langle\varepsilon\rangle \\
& \cdot *{ }_{0} \neq\{\varepsilon, 1\}=
\end{aligned}
$$

إذن العنمر ع لايولّد الزمرة صحم* .
ويصفة عامة إذا كانت (سح ، *) زمرة رتبتها ن وكان س \ni س سخفان : > س < سح ، د > ن . وفي الحالة التي يكن فيها > س > =سحنتل إن س مولُد للزمرة سح . تعريـف (1) - 1-1
نتقل إن الزمرة (سـ ، *) دائــرية إذاوُجــــ بها عنمر واحد على الاقل يولُدها (أي إذا وجـد بها عنمر س \ni سح بحيث > س > = س) .

مثـال (rV-1) :
أثبت أن (صح ، (†) زمرة دائرية وعين جميع مولــداتها . : الحـل
! ان (صص ، ¢
زمرة دائرية .

$$
\cdot \quad, ~ ص \neq\{\cdot\}=\langle\cdot\rangle: \dot{!}
$$

إذن العنصر 1 يولِّد الزمرة صح, وبالت

$$
\begin{aligned}
r^{n} \neq\{\cdot, \varepsilon, r\}=\left\{r_{r}, r_{r}, r\right\}=\langle r\rangle \\
\sim \sim \neq\{\cdot, r\}=\left\{r_{r}, r\right\}=\langle r\rangle \\
r \sim \neq\{\cdots r, \varepsilon\}=\left\{r^{r}, r_{q}, \varepsilon\right\}=\langle\varepsilon\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\{{ }^{r},{ }^{0},{ }^{\varepsilon}, r_{1},{ }_{1}, 1\right\}=\langle 1\rangle \\
& \left(r=|\oplus| \oplus\left|={ }^{r}\right| \text { تذكر }\right) \quad\{\cdot, 0, \varepsilon, r, r, 1\}= \\
& \text { १ }
\end{aligned}
$$

$$
\begin{aligned}
\left\{r_{0}, 0, \varepsilon_{0}, r_{0}, r_{0}, 0\right\} & =\langle 0\rangle \\
\{, 1, r, r, \varepsilon, 0\} & = \\
, r_{0}=\langle 1\rangle & =
\end{aligned}
$$

إذن مولّــداتالزمرة هص, هـا العنصران 1 , 0 فقط
مثـال (r

في المـال (رالعملية \oplus هي نفسها عملية الجمع المعرفة على صح

ε	r	\cdot	\oplus
ε	r	\cdot	\cdot
\cdot	ε	r	r
r	\cdot	ε	ε

جــــدل (1-1

من الجدول (1-9 - 1 (1) نستنتج أن :

(Y) المحايد الجمعي وهو الصفر موجود في Y (Y)
(r)

ε	r	\cdot	العنمـرهـرهـ

() (خاصة التجميع محقة ، لان

وبمـنة عامـة نــــدم التعريـف الآتي :
تعـريغ(11-1)
إذا كانت (سح ، *) زمرة وكانتصح مجموعة جزنية غير خالية منسحبحيث يكن (صح، *) زمرة فإن صح تسمى زمــرة جزئية من سح ونـرمـز للـلك بالرمـزصحصح (ونقرأه صح

زمرة جزئية من سه) .

شكل (1)

مثـال (ra-1)
انظر إلى المربع المبين في الشكل (

(P)

حمل مركزه " و " التي تحمًّ المربع إلى نفسه :
نعبْرَن الادران الموجب (أي الدوران في عكس اتجـا

$$
\left(\begin{array}{llll}
\varepsilon & r & r & 1 \\
1 & \varepsilon & r & r
\end{array}\right)=1_{1}^{s}
$$

لاحظ أن د, تطبيق تقابل مجاله = مجاله المقابل =
إلى الرأس r والرأس r إلى الرأس r والرأس r إلى الرأس ع والرأس ع إلى الرأس 1

$$
\begin{aligned}
& \left(\begin{array}{llll}
\varepsilon & r & r & 1 \\
r & 1 & \varepsilon & r
\end{array}\right)=, \nu 0, \nu=r
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
\varepsilon & r & r & 1 \\
\varepsilon & r & r & 1
\end{array}\right)=r 0_{1}, \nu=\varepsilon
\end{aligned}
$$

رهذا الحدان يعيد المربع إلى رضعه الاصلي ، بعبارة أخرى فابن :
الدوان دُ لا يغيًّر وضع المربع

 الرأس r والرأس ع على الترتيب فان :

$$
\begin{array}{ll}
\left(\begin{array}{llll}
\varepsilon & r & r & 1 \\
r & \varepsilon & 1 & r
\end{array}\right)=, \nu & \left(\begin{array}{llll}
\varepsilon & r & r & 1 \\
1 & r & r & \varepsilon
\end{array}\right)=0 د \\
\left(\begin{array}{llll}
\varepsilon & r & r & 1 \\
\varepsilon & 1 & r & r
\end{array}\right)={ }_{\wedge}
\end{array}
$$

$\{$ \{ , r, r, l \} $\}=$ وجميع مذه التناظرات هي تطبيقات تقابل مجال كل منها = مجال المقابل
(كها أن

 فان (سح، 0) زمرة غير إبدالية . حيث

يتبين من الجدل (1 - . 1) أن :
(سر ، 0) نظام مغلق وأنه غير إبدالي
لعدم تناظر العناصر حل قطر الجدل وأن به عنصراً محايداً هو د؛ وأن لكل

عنمر فيه نظير حيث :

آمَا خاصة التجميع غهي محقة لان عملية تصصيل التطبيقات ״ 0 ه تجميعية ، نظرية (1 -r)
تدريب (17-1)

في المثال (- Y Y) أجب عما يلي : -
(1) أثبت أن (سر، 0) زمرة غير دائرية رتبتها
 (

- () حل المعادلات الآتية في الزمرة سلا

$$
\begin{aligned}
& 0^{د}=0^{1-\nu}(P) \\
& v^{د}=1-v^{د} 0 س(ب) \\
& 1-r^{د}=\wedge^{د} 00(ح)
\end{aligned}
$$

تـــمـارين (1-1)
(1) أوجد حلل المعادلات الآتية في النظام (صحث، ٪) ، إن وجدت :

$0=\omega \odot r(\Delta) \quad r=r \odot r(p)$
$1=m \odot r(د) \quad 1=m \bigodot r(ب)$
(r) برمن أن النظام (صز ، ©) مغلق وتجميمي وإبدالي وبي عنمر محايد ضربي مو

(في التعارين (\&) إلى (. 1) إذا كانت الزمرة دانرية نعيُن أهد مولاتها

$$
\begin{aligned}
& \text { (. ، (1-،1\}) (}) \\
& (\oplus \cdot, \sim)(0)
\end{aligned}
$$

i-。 (د) $\quad r_{r}(P)$
$\left.{ }^{-r}(\lrcorner\right) \quad r^{-r}(\mu)$

- 9 (0) $\quad \circ$. (\rightarrow)

(1 (1) ناتش مسة العبارة الآتية
سـ زمرة دانرية \Leftrightarrow سح زمرة إبدالية.

(P) النظام ((
(ب) النظام ((

- 1 - ا النظام ذو العـمليتين الثنائيتين :

تعرف انْ عملية الجمع " + " على مجموعة الأعداد الكلية ل هي عملية ثنائية وقد رمزنا لذلك

 لـ بالثلاثي المرتب (ل ، + ، x) وندعوه نظامأذا عمليتين ثنائيتين أو نظامأ مغلقاً بالنسبة لعمليتي الجمع والضرب
وعادة نهتم بدراسة مثل هذا النظام (كما سنرى ذلل في باب " الأعداد المركبة " إن شاء الله)

$$
\begin{aligned}
& (0 \times r)+(r \times r)=(0+r) \times r \\
& \text { (لأن العملية } \times \text {) إبدالية }(r \times 0)+(r \times r)= \\
& r \times(0+r)= \\
& r \times v+r \times v=(r+r) \times v \\
& V \times r+V \times r= \\
& v \times(r+r)=
\end{aligned}
$$

وبصفة عامة إذا كانت P ، ب ,

$$
\begin{aligned}
& \sim \times p+ب \times p=(\sim+ب) \times p \\
& p \times \sim+p \times ب= \\
& p \times(ح+ب)=
\end{aligned}
$$

ونعـبُر عن ذلك بقولنا إن عملية الضرب تتوزع على عملية الجمع في ك .

تعريف (1r-1) :

العملية * إذا كان لكل P ، ب ، حـ \ni هس يتحقق الشرطان :

$$
\begin{aligned}
& (\sim \circ P) *(ب \circ P)=(\sim *) \circ P \\
& (P \circ \sim) *(P \circ)=P \circ(\sim *)
\end{aligned}
$$

$$
\text { مثـال (} 1 \text { r-1) : }
$$

(1) في النظام (ع ، - ،) تتقذع عملية الضرب على عملية الطرح لأنه :

$$
\begin{aligned}
& \text { لكل } \\
& {[(\sim-)+\quad] \times P=(\sim-ب) \times P} \\
& (ح-) \times P+ب \times P= \\
& P \times(ح-)+P \times ب= \\
& P \times[(ح-)+ب]= \\
& P \times(\text { ب- })=
\end{aligned}
$$

(Y) في النـظام (ع ، + ،

$$
\begin{aligned}
& \text { لكل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { فمـثلا } V=M r+0=(\varepsilon \times r)+0 \\
& V r=9 \times \wedge=(\varepsilon+0) \times(r+0)
\end{aligned}
$$

مثـال (
إذا كانتسحمجموعة جميع المجمعات الجزئية لمجموعة معينة فإنك تعلم من دراستك السابقة

(1) عملية التقاطع 〇

(IV-1) نداريب (V)

تـــمارين عامــة

() (إذا كانت * عملية ثنابية معرفة على المجموعة هح على النحو التالي :
س * ص = س - Y ص

$$
\begin{aligned}
& \text { (() إذا كانت ®® عملية ثنائية على المجموعة ك معرّفة على النحو التالي } \\
& \text { س ®® ص =س + ص +س ص لكل س •ص } \ddagger \text { ك } \\
& \text { فأجب عما يلي } \\
& \text {, V®® () (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ب) أثبت أن ® إبدالية } \\
& \text { (ح) ماهو العنصر المحايد للعملية © © ؟ } \\
& \text { (د) مل العملية ® تجميعية . ؟ }
\end{aligned}
$$

> (1) هل عملية الضرب تّذع على عملية الجمع في النظام (ن ، + ، x) ، ولماذا ؟
> (Y) هل عملية الجمع تتّع على عملية الضرب في النظام (ن ، + ، x) ، ولماذا ؟
> (r) هل عملية الضرب تّذع على عملية الطرح في النظام (صه ، - ، x) ، ولماذا ؟
> (£) هل عملية الطرح تَدذع على عملية الضرب في النظام (مـ ، - ، x) ، ولماذا ؟

فأجب عما يلي :

$$
(r * V) * T \text { (} 1 \text { (} P \text {) }
$$

(ب) هل بوجد للعملية الثنائية * عنصر محايد ؟
(ح) هل العملية الثنائية * إبدالية ؟ تجميعية ؟
(r) لتكن العملية * معرفة على مجموعة الاعداد الحقيقية ع كالآتي :
P
(أبّت أن * غير إبدالية
(ب) أوجد العنصر المحايد لهذه العملية إن أمكن
(أكب جدولأ لعملية تحصيل التطبيقات 0 على المموعة
س
د, : دودان المستطيل P ب حـ د باتجاه دودان عقارب الساعة حل " و " بزاوية . چr"

ل, : تناظر المستطيل P ب حـ د حمل س س,
لي : تناظر المستطيل P ب حـ د حل ص ص صر
(ب) ادرس خواص العملية „ 0 " من حيث :
(1) كونها عملية ثنائية على سح.
(0) ادرس الأنظـمة الـواردة في التمارين (1) إلى (٪) وحدد ما إذا كان كل منها زمرة أم لا ،

(ح) ماهو نظير العنصر V في

$$
\cdots={ }^{0-} r:(\Delta)
$$

$$
|\langle r\rangle|
$$

 بحيث تكن :
$7=\left|\nabla_{r}\right| \cdot \varepsilon=\left|r_{r}\right| \cdot r=|, ~ س|$
(V) ناقش صحة كل من العبارتِن الآتيتين :
"

(1) بين ما إذا كانت إحدى العمليتِن تَيزع على الأخرى في الأنظمة الآتية

$$
\begin{aligned}
& \text { مـع التــبرير } \\
& \text { () في الزمرة (} \\
& \cdots=\mid \text { ir }_{*}^{*} \mid: \text { أكمل (P) }
\end{aligned}
$$

> كونها إبدالية أملا
> • (
> ()
> (ح) هل (س هـ 0 0) زمرة إبدالية ؟ ولماذا ؟
> (د) هل (س~~ه) زمرة دائرية ؟ مع التعليل ؟

المصفـــوفات والمـــــددات

تمهـ
r- r بی أنواع المصفوفات المشهوة
r- جمع المصفوفات وضرب مصفوفة بعدد حقيقي. .

- - r النظير الضربي لمصفوفة
r- ب- ب
ارلٌ : حل نظام المعـادلات من الدرجـة الأولى في مـجـهـهـولين ثانياً : تطبيقات متوعة

V - r استخدام المحددات من الارجتين الثانية والثالثة في حل
انظظمة النعادلات الخطية .

نبداً هذا الباب بدراسة المصفوفات ثم نأتي على دراسة المحددات في نهاية الباب • إن لدراسة المصفوفات في الرياضيات أهمية كبىى إذ أنها تستخدم في العديد من فرع مذا العلم وتطبيقات ، ومن ذلل استخدام المصفوفات في حل أنظمة المعادلات الخطية وفي حل مساثل البرمجة الخطية والتي تطرقت لحالات مبسطة منها في الصف الانل الثانيي . وتأتي أمهية المصفوفات من أنها تستخدم لتميل دوال التحويلات الخطية في موضوع الجبر الخطي • إن للرياضيات تطبيقاتها الكثيرة في العديد من العلوم الإنسانيـة والاقتصادية والفيزيائية والهندسية وهذا يتمثل بصورة خامة في المصفوفات والتي لايستغني عن دراستها المشتغلون في علوم الاقتماد والاجتماع والفيزياء والإحصاء والهندسة بَّنـواعها . بالنسبة لتـاريخ دراسـة المصفوفات فربما يكن أنل من
 تعريف المصفوفات ، نستعرض المـال التالي

مثـال (1-r)
لنفرض أن لدينا أربعة طلاب P ، ب ، حـ ، د د كانت درجاته في اختبار مادة التفسير هي عمى

يمكن تنظيم هذه المعلومات في جدول مستطيل من ثلاثة مفوف وأربعة أعمدة كما يلي

إن المش الالل في مذا المستطيل يعبر عن درجات الملاب في التنسير ، والصف الثاني
يعبر عن درجاتهم في الحعيث الهريف ، أما الحف الثالث فيعبر عن درجات الطلاب في التوحيد ، كا أن العمد الاكل يعبر عن لرجات الطالب P في المواد الثلاث معاً ، والعمود الثاني يعبرعن درجات الطالب ب في المواد الثلاث معاً ، والعمود الثالث يعبر عن درجات الطالب حـ في المواد الثلاث معاً ، انما العمود الرابع فيعبر عن درجات الطالب د في المواد الثلاث معاً . إن مذا الجمل يعبر عن مصفوفة ، وقد اصطلح على أن تكب على الصودة :

$$
\left(\begin{array}{llll}
9 . & 7 r & v r & \wedge 0 \\
\wedge \wedge & \vee . & \wedge \varepsilon & v_{0} \\
\wedge \varepsilon & 0 \wedge & \vee \tau & 7 .
\end{array}\right) \quad \text { g } \quad\left[\begin{array}{llll}
9 . & 7 r & v r & \Lambda_{0} \\
\wedge \wedge & v . & \wedge \varepsilon & v_{0} \\
\wedge \varepsilon & 0 \wedge & v \tau & 7 .
\end{array}\right]
$$

وسنختار الاصطلاح الأل في هذا الكتاب . كما تجدر الملاحظة إلى أن المصفوفة السابقة مكرنة من Y ويصفة عامة نتدم التعريفِين الآتين :

تعريــــن
الممصفوفة عـبارة عن تنظيم عددي مـؤلف من م • ن عـمــراً ، مرتـبـة في جـدول مستـطيل مكـن من م صــفاً ، ن عمـوداً . حيث م • ن عـددان طبيعـيان .
تعريـــ(Y-Y) :

نتــل عن مصـوفة إنها من النوع م × عددهـام وأعـدة عددها ن كـا نتـــل اختمارأ إنـا مصغـوفة م × ن حيث م ، ن عددان طبـيعيان

سنرمز للمصفرفة بـحرف تحته خط مــل |لمـفـونة وعناصرها

كها يجب الانـتَباه إلى أن عـناصر أي مصفـوفة في هذا الــباب تـتـمي إلى مجموعة الأعـداد الحقيقة
مثـال (r-Y) :
! إن كلأ من التنظيمات العددية التالية هو عبارة عن مصفوفة حسب التعريف ((Y Y) :

$$
\begin{aligned}
& {\left[\begin{array}{lll}
r & 1 & \varepsilon \\
r- & 0 & v-
\end{array}\right]=\underline{?}} \\
& {\left[\begin{array}{ll}
1- & 1 \\
\cdot & r \\
\varepsilon & 0
\end{array}\right]=\underset{=}{ }(r)} \\
& {\left[\begin{array}{cc}
ب & p \\
j & \sim
\end{array}\right]=\geq(r)}
\end{aligned}
$$

لاحـط أن المصفوفة أ في الفقرة (1) هي عبارة عن ستة عناصر مرتبة في صفين وثلاثة أعمدة
 العـــود الأل هي ع , و
وحسب التعـريف (- Y) نقل :

$$
\begin{aligned}
& r=0 \text { ، } r=\text {, حيث } \\
& \text { ! } \\
& \text { r }=\text { ~ } \\
& \text { أمـا المصفوفة سِ فهي من النوع 「 × ع (لماذا ؟) }
\end{aligned}
$$

تدريب (

في الفقرة (1)
بصفنة عامـة إذا كانت س مصفوفة من النوع م × ن فإنتا نكتب سِ على الصورة التالية

$$
\begin{aligned}
& \text { ردغــبة في الاخـنصار نكــب المصفوفة سِ بالصورة } \\
& \text { •...., r, r, l = س } \\
& \text { ن....,r,r, }=\text { - }
\end{aligned}
$$

إن س هـ ــ يمثل عنصراً عاماا في المصفوفة سس حيث ترمز ى إلى ترتيب الصف الذي يقع فيه العنصر ، بينما ترمز هـ إلى ترتيب العمود الذي يتع فيه هذا العنصر وبذلك يتعين العنمر سیى هـ
 الذي يتع في تَاطع الصف ذى الترتيب ى والعمود ذي الترتيب هـ

$$
\begin{aligned}
& \text { !إن عناصر الصف ذي الترتبب ى ني المصفوفة سِ مي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وعناصر العمود ذي الترتيب هـ في المصفوفة سِ هي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثال (r-r) } \\
& {\left[\begin{array}{lll}
r & 1- & 1 \\
0 & 1 & \varepsilon-
\end{array}\right]=\underline{\sim}} \\
& \text { فعين قيم جميع العناصر سى دـ } \\
& \text { : الحل } \\
& \text { بما أن المصفوفة من النوع r ب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سى ــ لـ ستة قيم هي } \\
& \text { العنصر الذي يقع في الصف الأول والعمود الأل = س } \\
& \text { العنمر الذي يقع في الصف الأنل والعمود الثّاني س, } \\
& \text { وبـــالمثـــل سוr = } \\
& \text { تعريــف (Y } \\
& \text { نقرل إن المصفوفتين سي ، صـ متساويتان ونكب سِ = صـ إذا تحقق الشُرطان التاليان معاً }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Y) سلى =ـ صصى دـ لجميع قيم ى ، هـ المكنة ، حيث ى ، هـ عددان طبيعيان }
\end{aligned}
$$

عيّن قيم P ، ب ، ح ، د د إذا عملت أن :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\varepsilon- & ب-p \\
0 & r+\sim r
\end{array}\right]=\underline{m}} \\
& {\left[\begin{array}{cc}
ب+1 & 1 \\
ب-1 & q
\end{array}\right]=\underline{m}}
\end{aligned}
$$

وانن س =
: الهـل
من تعريف تساوي مصفوفتـين نجد أن :

$$
\begin{array}{lr}
(1-r) & 1=ب-p \\
(r-r) & q=r+\sim r \\
(r-r) & \varepsilon-=++1 \\
(\varepsilon-r) & 0=u-1
\end{array}
$$

من المعادلة (Y- ع) نـجد أن ب = - ع ومن

$$
r-=\varepsilon-1=ب+1=p
$$

من المعادلة (
حيث د = - ع - ب = - ع + ع = صفراỉ.

تدريب (Y-Y)
(1) ماعدد العناصر في كل من المصفوفات الآتية :

A×V مصفوفة من النوع (

$$
\begin{aligned}
& \text { (Y) أوجد قيمة كل من P ، ب ، حـ ، د إذا كان : } \\
& {\left[\begin{array}{ll}
0- & r \\
r-\nu & \sim
\end{array}\right]=\left[\begin{array}{cc}
1+ب r & r-P \\
17 & r+P
\end{array}\right]} \\
& \text { تـــماريـن (}
\end{aligned}
$$

(1) أربع مدن مي P ، ب ، حـ ، د ، فإذا كانت المسـانة بالكيلومترات بين أي مدينتِن موضحة

في الجدلـ التالي

فنجب عما يلي :
أولُّ : اكتب مصنوفة تمثل هذه المعلومات
ثانياً : بغرض أن سِ هي المصفوفة المطلوبة ني أونُ أوجـد مايلي :
(P) (P)
(ب) س س ب وماذا يعني ذلك ؟

(د) اكتب جميع عناصر الصف الثاني للمصفوفة س .
(هـ (ـ) اكتب جميع عناهر العمود الثاني للمصفوفة س مـ
(و) ماذا يمكن استنتاجه من (د) ، (هـ) ؟
(
ماذا تلاحظ مع إبداء السبب ؟
(أكمل مايلي :
. (
(Y) سیى دـ = ســـي لجميع قيم
(ط) هـل تلاحظ أن سِ هي مصفوفة تـمتع بخواص معـينة لا تنطبق على المصفوفات بشكل
عام أم لا

إذا عملت أن

$$
\left[\begin{array}{cc}
ب r & 10 \\
\cdot & 1 .
\end{array}\right]=\left[\begin{array}{cc}
1 . & p r \\
-ب r & \sim+P r
\end{array}\right]
$$

(r) اكتب المصنوفة Pِ إذا علمت أن P

 عنامر المف الرابع هي نفس عناصر المف الثاني بعد ضرب كل عنمر في (- r)

(r

∞	1	
10.	10	p
$1 \ldots$	10	$ب$
$1 \ldots$	Y	\sim

-

الجـول (() يبين أجــد المكالمات الهاتفية في الدقيقة الواحدة بالهللات من P ، ب ، ح إلى المدينتين د ، هـ والجدل (Y) يمئل أجد المكالمات الهاتفية في الدقيقة الواحـدة بالهــللات من

. كتابة مصفوفة تعبر عن الجدول (() وتبيان نوعها وعدد عناصرها (Y)
(ب) () كتابة مصفوفة تعبر عن الجدول (
(ـ) إذا علمت ان المصفـوفتين المعبرتين عن الجدولين ((Y) ، (Y) متساويتـان فأوجد قيم كلِ

r - r بـعض أنـواع المصـفوفـات المشـهـورة :
(1) المصفوفـة المستطـيلة :

وهي مصفـوفـة من الــوع م × ن حيـث م
 ن = ا فإن المصفوفة تسمى » مصفوفة عمود « أي أن مصفوفة العمود من النوع م ×
(؟) المصفوفة المريعـة :
وهي المصفوفة من النوع ن × ن أي أن عدد صفـوفها يساوي عدد أعمدتها ـ لاحظ أنه في أي

(r) (r) المصفيفة القطرية :

وهي مصفوفة مربعة جميع عناصرها أصفار مـا عدا العناصر الواقعة على القطر فيكون أحدها على الاقل مغايراً للصفر .
() مصفوفة الوحـده :
وهي مصفوفة قطريـة يكون فيها كل من العناهر الواقعة على القطر مساويـاً الواحد وسنرمز لها بالرمز ــ ن أو بالرمز عـ إذا لم نخش الالتباس .
(0) المصفوفة الصفرية
 " " " إذا لم نخش الالتباس

الآعداد V . Y,

$$
\left[\begin{array}{ccc}
\cdot & \cdot & 1 \\
\cdot & 1- & \cdot \\
r & \cdot & \cdot
\end{array}\right]
$$

(0) المحفوفة :
r. 1 - . 1 تمغوفة تطرية r

$$
\left[\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & 1 & \cdot \\
1 & \cdot & \cdot
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & \cdot
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
\\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { مثـال (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ع = } \\
& 1=\dot{u}, r=r \text { مصنوفة عمود ، فيها } \quad\left[\begin{array}{l}
r \\
i
\end{array}\right]: \text { المصفوفة } \\
& {\left[\begin{array}{lll}
0 & 1- & r \\
0 & r & 1- \\
i & r & v
\end{array}\right]}
\end{aligned}
$$

لان اليمنى من النوع Y Y أما اليسرى فمن النوع Y X
 r - r

جـهع المصفوفـات :
إن اللممغوفات بناءاً جبرياً يمكن من خلاله أن نجري العديد من العمليات الحسابية مثل الجمع والضرب ولكن هنال قيود على مذه العمليات تتعلق بنوع كلِ من المصفوفتين الخاضعتين اللعملية الجبرية . سنبدأ في هذا البند بعملية الجمع . فإذا كان لدينا

$$
\left[\begin{array}{cc}
11 & v \\
10- & r \\
r & \varepsilon
\end{array}\right]=\underline{\infty} \cdot\left[\begin{array}{cc}
1- & \varepsilon \\
r & 0 \\
v & r
\end{array}\right]=\underline{w}
$$

 من النوع نفسه (

$$
\begin{aligned}
{\left[\begin{array}{cc}
11+1- & v+\varepsilon \\
(10-)+r & r+0 \\
r+v & \varepsilon+r
\end{array}\right] } & =\underline{v}+\underline{m} \\
{\left[\begin{array}{cc}
1 & 11 \\
1 r- & v \\
9 & v
\end{array}\right] } & =
\end{aligned}
$$

ماذا لو كان نوعا الممفوفتين المراد جمعها مختلفين ؟
. هل يمكن جمعهما ؟ نرجو أن تكن قد عرفت الجواب على أية حال ها نحن نورد تعريف جمع مصغفرفتين مـا يجيب على السوال

تمريــ (

!إن مذا التعريف يعني أننا نستطيع جمع أي مصقوفتين سِ ، صـ إذا وإذا نتط كانتا من
النوع نفسه (م × ن) وحينظذ يمكنا أن نكب مجموعهـا بالمورة .

$$
\begin{aligned}
& \text { • [}
\end{aligned}
$$

أي أننا نحمل على مصفوفة جديدة من النوع نفسه كل عنصر فيها هو مجموع العنمرين المتناظرين بالوضع في سِ ، مِ

$$
\begin{aligned}
& {\left[\begin{array}{lll}
r & r- & v \\
1 & r & 0-
\end{array}\right]=\underline{m}} \\
& {\left[\begin{array}{lll}
\varepsilon & r & r- \\
v- & r & 0
\end{array}\right]=\underline{w}} \\
& \text { فنّوجد : س + }
\end{aligned}
$$

: الحل
بما أن المصفوفتين سِ ، صـي من النوع نغسه فابن الممع مسكن (معرف) .

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\varepsilon & r & r- \\
v- & r & 0
\end{array}\right]+\left[\begin{array}{lll}
r & r-v \\
1 & r & 0-
\end{array}\right]=\boldsymbol{\omega}+\boldsymbol{\omega}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
v & 1 & 0 \\
1- & 9 & \cdot
\end{array}\right]=} \\
& \text { تدريب (r-r) } \\
& \text { في المثال (} \\
& \underline{\mu}+\underline{\mu} \cdot \underline{\mu}+\underline{\sim} \\
& \text { هل يمكن جمع المصفوفة سـ مع المصفوفة ع ع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ضرب مصفوفة بعدد حقيقي : }
\end{aligned}
$$

الجدول الآتي يبين أجد المكالمات الهاتفية بين المدن المذكدة فيه بالريالات للدقيةة الواحدة.

إن المصفوفة
تسثل مذا الجلىل

لو ضربنا كل عنصر من عناصر مذه الممفرفة بالعدد . . ا لظهرت معنا ممفوفة أخرى تعبر عن الاججد بين ثلك المدن بالهللات ونكن بذلك قد ضربنا المصفوفة سِ بالعدد . . ا أي أن :

$$
\left[\begin{array}{lll}
10 . & 1 \ldots & 100 \\
r . & 1 \ldots & 1 \ldots
\end{array}\right]=\left[\begin{array}{lll}
1,0 & 1 & 1,0 \\
0, r & 1 & 1
\end{array}\right] 1 \ldots=\underline{m} 1 \ldots
$$

وبالتالي نقدم تعريف ضرب ممفوفة بعدد حتيقي بشكل عام :

$$
\text { تعريـــــ (- } 0 \text {) : }
$$

إذا كانت س = فإن حاصل ضرب المصفوفة س بالعدد الحقيقي ك مو المصفونة ع = [ع عى هـ] حيث

في التعريف (

[ك • سى هـ] = [سى مـ . ك]

ومذا يعني أن بإمكاننا أن نكب ك . س = سِ . ك ولعلك تلاحظ أن المصفوفة الناتجة من النوع نفسه .

بتطبيق التعريف (- - o) مباشرة نجد أن :

$$
\left[\begin{array}{ll}
r- & 1 \\
\varepsilon & r \\
1- & \cdot
\end{array}\right] r=\underline{m} r=\underline{\mu} \cdot d
$$

$$
\begin{aligned}
{\left[\begin{array}{ccc}
(r-) \times r & 1 \times r \\
\varepsilon \times r & r \times r \\
(1-) \times r & \times & \times r
\end{array}\right] } & = \\
{\left[\begin{array}{ll}
r- & r \\
\hat{r} & \varepsilon \\
r- & \cdot
\end{array}\right] } & =
\end{aligned}
$$

في المثال (V-Y) أوجد ك . سِ عندما تكن :

$$
\begin{aligned}
& \frac{1}{r}=\int(p) \\
& 1-=\int(ب) \\
& \overline{r V}=\int(土)
\end{aligned}
$$

تعريــل (Y Y Y) :

س - صـ = س + (-1) صـ

$$
\begin{aligned}
& \text { مثـال (} \\
& \text { إذا كانت } \\
& {\left[\begin{array}{lll}
r & 1 & r- \\
1-v & \cdot
\end{array}\right]=\underline{\infty},\left[\begin{array}{lll}
0 & r-r \\
0 & 1 & r-
\end{array}\right]=\underline{m}} \\
& \text { فنوجد : سـ - صـ } \\
& {\left[\begin{array}{ccc}
r-0 & 1-r- & (r-)-r \\
(1-)-\cdot & v-1 & \cdot-r-
\end{array}\right]=\underline{\sim}}
\end{aligned}
$$

(1) $\left[\begin{array}{ccc}r & \varepsilon- & \varepsilon \\ 1 & 1- & 7-\end{array}\right]=$
تدريب (Y -

في المثال (\wedge) أوجد : ص -
*م وانن بين س - ص ص ماذا تلاحظ ؟

خـواص جـمع المصـفوفـات وضـربهـا بـعـد حـقـيقـي (P)

إذا كانت سح مجموعة المصفوفات من النوع م x ن فإن النظام (سح، +) ، حيث " + " عملية جمع المصفوفات يتمتع بالخواص الآتية : (1) العملية "+ « شنائية على سحلانه : لكل س • ص
(Y) العملية \# + * إيدالية لان :
=

$$
=
$$

تسمى المصفوفة صـ المعكوس (النظير) الجمعي للمصفوفة سِ ونرمز لذلـك بالرمـز
(- س) ونستنتج من ذلل أن : (-1) س = - س

$$
\text { ملحـوظة (ז - })
$$

لعـلك تلاحــط أن الخـواص السابـةَّ يمكن إيجازها في قولنا ״ إن النظام (سه ، +) زمرة إبدالية "

$$
\begin{align*}
& \text { يوجد في سل عنمر محايد ، هو المصفوفة الصفرية ٪ } \tag{£}\\
& \text { لكل س } \ni \text { س } \\
& \underline{\mu}=\underset{\sim}{\dot{\rho}}+\underline{w} \\
& \text { (0) لكل مصفوفة سِ } \ni \text { س يوجد مصفوفة } \tag{०}\\
& \text { ص } \\
& \underset{\sim}{\dot{r}} \dot{\sim}+\underline{w}
\end{align*}
$$

$$
\begin{aligned}
& \text { الكل سِ ، صـ }
\end{aligned}
$$

$$
\begin{align*}
& \text { = } \\
& \text { = } \\
& \text { العملية " + " تجميعية (دامجة) لان } \tag{r}
\end{align*}
$$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

(ب) خواص ضرب مصفوفة بعدد حقيقي :
إذا كانت س ، صـ مصغفوفتين م× ن وكان ك ، ل

$$
\begin{aligned}
& \text { (P) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { () }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

يعتمد برهان هذه الخواص على فرض أن :

 سنبرمن على صحة الفقرة (P) ، ونترك الغترات الباقية كمرين للطالب :

$$
\begin{aligned}
& \text { : لنغرض [عى هـ] = } \\
& \underline{\varepsilon} \cdot \int=\text { (}
\end{aligned}
$$

=
=
مثال (

هي حـل للمعادلة
(1)

$$
\underline{p}=\underline{\underline{p}}+\underline{w}
$$

بإضافة المصفوفة - بِ إلى طرفي المعادلة (1) نجد أن :

$$
(\underline{w}
$$

س
ملحـوظة (r

إن - بِ هي النظير الجمعي اللمصفوفة بِ ، وهو نظير وحيد والعنصر المحايد (-) رحيد وبالتالي يكن :
(1) (1 ب

مثـال (1.

$$
\left[\begin{array}{ll}
0 & 1 \\
r- & 0
\end{array}\right]=\underline{u} \cdot\left[\begin{array}{ll}
1 & r \\
r & 0
\end{array}\right]=\underline{p} \quad: \quad \text { إذا كانت }
$$

فأرجد حل المعادلة : سِ + بـ ب
الحل :

اعتماداً على ما حصلنا عليه في المـال (

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & \cdot
\end{array}\right]=\left[\begin{array}{ll}
r & 1 \\
r- & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & r \\
r & 0
\end{array}\right]=\underline{\underline{\varphi}-\underline{p}=\underline{m}}} \\
& \text { التحـقِقق : } \\
& {\left[\begin{array}{ll}
1 & r \\
r & 0
\end{array}\right]=\left[\begin{array}{ll}
r & 1 \\
r- & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]==\begin{array}{ll}
\text { الطرف الايمن }
\end{array}} \\
& \text { = }
\end{aligned}
$$

() تـم بـبرهان الخـواص (ب) ، (ح) ، (د) ، (مـ) ، (د) من خــواص ضـرب مصفـوفة
بعدد حقــقي
(Y) أوجد حـل المـعادلة س +

$$
\left[\begin{array}{lll}
r- & 1- & 1 \\
\varepsilon & \cdot & 1-
\end{array}\right]=\underline{=} \cdot\left[\begin{array}{lll}
r & i- \\
r- & 1 & \cdot
\end{array}\right]=\underline{p}
$$

مثـال (11-r)
حل المعادلة المصفوفية الآتية :

$$
\left[\begin{array}{cc}
1 & r \\
1- & \cdot
\end{array}\right]+\underline{m}(\varepsilon-)=\left\{\left[\begin{array}{cc}
1 & 1 \\
\cdot & 1-
\end{array}\right]-\underline{m}\right\} r-
$$

الـلـ :
باستخدام الفقرات (P) ، (ب) ، (ح) من خواص ضرب ممفوفة بعدد حقيقي ينتج :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & r \\
1- & \cdot
\end{array}\right]+\underline{\mu}(\varepsilon-)=\left[\begin{array}{ll}
1 & 1 \\
\cdot & 1-
\end{array}\right](1-)\left(r^{-}\right)+\underline{w} \cdot\left(r_{-}\right)} \\
& {\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]+\underset{\sim}{w}(\varepsilon-)=\left[\begin{array}{cc}
r & r \\
\cdot & r_{-}
\end{array}\right]+\underline{m} \cdot(r-)} \\
& {\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]+\underline{w}(\varepsilon-)+\underline{w} \cdot \varepsilon=\left[\begin{array}{cc}
r & r \\
\cdot & r_{-}
\end{array}\right]+\underline{m} \cdot\left(r_{-}\right)+\underline{w} \cdot \varepsilon \Longleftarrow} \\
& {\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]+\underline{m}((\varepsilon-)+\varepsilon)=\left[\begin{array}{cc}
r & r \\
\cdot & r-
\end{array}\right]+\underline{m}((r-)+\varepsilon) \Longleftarrow}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]+\underline{w} \cdot \boldsymbol{w}=\left[\begin{array}{cc}
r & r \\
\cdot & r_{-}
\end{array}\right]+\underline{w}} \\
& {\left[\begin{array}{ll}
r- & 1- \\
1- & r
\end{array}\right]=\left[\begin{array}{ll}
r & r \\
\cdot & r-
\end{array}\right]-\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]=\underline{w}}
\end{aligned}
$$

$$
\Leftarrow
$$

ملحوظة (r - r)

بعا أن التواع العامة لحل المعادلات في النظام العددي ع قائة منا ، لذا يككن حل مذا
المال بسرعة على النـو التالي :

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]+\underline{m} \underline{\varepsilon}=\left[\begin{array}{ll}
1 & 1 \\
\cdot & 1-
\end{array}\right] r+\underline{m}^{r-}} \\
{\left[\begin{array}{ll}
1 & 1 \\
\cdot & 1-
\end{array}\right] r-\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]=\underline{w}^{r-\underline{m}^{\varepsilon}}} \\
{\left[\begin{array}{ll}
r- & 1- \\
1- & r
\end{array}\right]=\left[\begin{array}{ll}
r- & r- \\
\cdot & r
\end{array}\right]+\left[\begin{array}{ll}
1 & r \\
1- & \cdot
\end{array}\right]=\underline{m}}
\end{gathered}
$$

تــمـارين (r-r)
(1) قم بالعمليات التالية إن أمكن ، مع ذكـر السبب في حالة تعذر إجراء العملية :

$$
\begin{align*}
& {\left[\begin{array}{ccc}
r & 1- & \dot{r} \\
0- & \varepsilon & r
\end{array}\right]+\left[\begin{array}{lll}
\dot{\varepsilon}- & r & r \\
\varepsilon & 1
\end{array}\right]} \tag{P}\\
& {\left[\begin{array}{cc}
\varepsilon & 0 \\
\tau- & 0
\end{array}\right]+\left[\begin{array}{ccc}
r & 1- & r \\
\tau & 0 & \varepsilon
\end{array}\right]} \tag{ب}\\
& {\left[\begin{array}{ccc}
1 & 1- & 1 \\
1- & 1 & 1-
\end{array}\right]+\left[\begin{array}{lll}
\sim & ب & p \\
0 & \rightarrow & د
\end{array}\right](\rightarrow)} \\
& {\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]+\left[\begin{array}{lll}
\dot{u} & 0 & J \\
v & , & \Delta
\end{array}\right]} \tag{}\\
& {\left[\begin{array}{ll}
\sim- & m- \\
J- & \varepsilon-
\end{array}\right]+\left[\begin{array}{ll}
v & \varepsilon \\
J & \varepsilon
\end{array}\right]} \\
& {\left[\begin{array}{ll}
q- & \varepsilon- \\
9 & r
\end{array}\right]-\left[\begin{array}{ll}
q & \varepsilon \\
r- & r-
\end{array}\right]} \\
& \text { (} \mathrm{g} \text {) } \\
& {\left[\begin{array}{l}
\cdot \\
\cdot
\end{array}\right]+\left[\begin{array}{ll}
7 & \wedge
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\infty & m
\end{array}\right]-\left[\begin{array}{ll}
j & p \\
j & ح
\end{array}\right]} \tag{}\\
& {\left[\begin{array}{l}
\varepsilon- \\
0
\end{array}\right]+\left[\begin{array}{l}
\varepsilon \\
0-
\end{array}\right]} \tag{b}\\
& {\left[\begin{array}{ll}
\frac{1}{7} & \frac{1}{0} \\
\frac{1}{9} & \frac{1}{\lambda}
\end{array}\right]+\left[\begin{array}{ll}
\frac{1}{r} & \frac{1}{r} \\
\frac{1}{0} & \frac{1}{\varepsilon}
\end{array}\right]} \tag{s}
\end{align*}
$$

$\left[\begin{array}{ll}r- & r- \\ r & 1 \\ \varepsilon & \cdot\end{array}\right]= \pm \cdot\left[\begin{array}{ll}1 & r \\ r & r_{-} \\ r- & \varepsilon-\end{array}\right]=\underset{=}{r} \cdot\left[\begin{array}{ll}r- & r_{-} \\ r & 1 \\ 0 & \cdot\end{array}\right]=\underset{~: ~}{P}$
(
(ب) () (
 (د) () (

$$
\left.\left.\begin{array}{lll}
\cdot=\lrcorner(\rightarrow) & 1-=\lrcorner(ب) & r
\end{array}\right)=\right\lrcorner(p)
$$

(₹) إذا كانت :

$$
\left[\begin{array}{ll}
\cdot & r \\
0 & \cdot
\end{array}\right]=\underset{\sim}{2} \cdot\left[\begin{array}{ll}
\varepsilon & r- \\
0 & \cdot
\end{array}\right]=\underline{\varphi} \cdot\left[\begin{array}{ll}
r & r \\
1 & 0
\end{array}\right]=\underline{p}
$$

فعبر عن كل مطا باتتي كهصفوفة
= - ب + Pr (P)

$$
\neq \varepsilon-\underline{\underline{e}} r+\underline{p} r \quad \text { (ب) }
$$

$$
\neq r-(\neq r+p) r(\rightarrow)
$$

$$
(\underset{\sim}{+}+\underline{\underline{p}}+\underline{p}) r(د)
$$

$$
(\underset{+}{+}+\underset{\underline{+}}{+})-\underline{p}(ـ)
$$

$$
=+(\underline{\underline{u}}-\underline{p}) r(\mathrm{~g})
$$

(ه) باستعمال الممفوفات P P ب
المصفوفية الاتية :

$$
\begin{aligned}
& \underset{\sim}{\sim}+\underline{\underline{w}}+\underline{p}(P) \\
& \text { ح }-\underline{\underline{e}} \underline{m}^{r}+\underline{P}(ب)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\underline{y}} r+\underline{w^{r}}=(\underline{m}+\underline{P}) \frac{1}{r}(\mathrm{~L})
\end{aligned}
$$

(7) بفرض أن س ، صـ هص (

$$
\begin{aligned}
& \text { ص } \\
& \text { (ب) (}
\end{aligned}
$$

:
سنوضّ طريقة إيجاد حامل ضرب مصفونة بمصفوفة أخرى من خلال الامثلة الاتية :

$$
\left[\begin{array}{c}
0 \\
\varepsilon \\
1-
\end{array}\right]=\infty \cdot\left[\begin{array}{lll}
r & r & 1
\end{array}\right]=\sim \text { س } 1 \text { (1) }
$$

فابن حاصل ضرب سـ في صـ يعرف كـا يلي :

$$
[(1-) \times r+\varepsilon \times r+0 \times 1]=
$$

حيث يتم ضرب عنصر من سِ في العنصر الواتع في نهاية السه في المصفوفة صـ ومن ثم نجمع النتانج فيكن :

$$
\begin{gathered}
{[r-\Lambda+0]=\underline{\infty}} \\
{[1 \cdot]=}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1-r \\
- & \varepsilon
\end{array}\right]=\underset{\sim}{r} \cdot\left[\begin{array}{ll}
0- & r
\end{array}\right]=\underline{\sim}}
\end{aligned}
$$

$$
\begin{aligned}
& {[\times \times(0-)+(1-) \times r \quad\{\times(0-)+r \times r]=} \\
& \text { [} \mathrm{r}-18-\mathrm{f}= \\
& \text { (r) إذا كانت : } \\
& {\left[\begin{array}{c}
1- \\
i \\
1
\end{array}\right]=\underline{\sim} \cdot\left[\begin{array}{lll}
r & 1- & 1 \\
1 & \cdot & r
\end{array}\right]=\underline{w}} \\
& \text { فان سِ ـ صـ يعرن كها بي : } \\
& {\left[\begin{array}{c}
1- \\
i \\
i
\end{array}\right]\left[\begin{array}{lll}
r & 1- & 1 \\
1 & \cdot & r
\end{array}\right]=\underline{\sim} \cdot \underline{\sim}} \\
& {\left[\begin{array}{c}
r \\
1-
\end{array}\right]=\left[\begin{array}{cc}
1 \times r+ & \times(1-)+(1-) \times 1 \\
1 \times 1+ & \times \cdot+(1-) \times r
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
r & 1 \\
1 & 0 \\
0 & 1-
\end{array}\right]=\underline{\sim}\left[\begin{array}{ccc}
1 & 0 & r \\
r & 1- & 1
\end{array}\right]=\underline{\sim} \underset{\sim}{\text { 浣 }}} \\
& {\left[\begin{array}{ll}
\cdot \times 1+1 \times+r \times r & (1-) \times 1+0 \times++1 \times r \\
\cdot & \times r+1 \times(1-)+r \times 1 \\
(1-) \times r+0 \times(1-)+1 \times 1
\end{array}\right]=\underline{\sim}} \\
& {\left[\begin{array}{cc}
r & 1 \\
r & v-
\end{array}\right]=}
\end{aligned}
$$

(0) إذا كانت :

$$
\begin{aligned}
& \text { فإن : سِ • صـ }
\end{aligned}
$$

وبوضن س

$$
\begin{aligned}
& \text { = }{ }_{11}
\end{aligned}
$$

أكمل بنفسك باقي عناصر ع

من المصفوفة صـ أي أن :

$$
r, r, 1=A \text { حيث }
$$

من الامثة السابقة نلاحظ ونستنتج مايلي :
(1) إن عدد أعمدة المصفوفة س يساوي عدد منرف المصفرفة ص في كل من الاامثة الخمسة السابقة وجدير بالذكر أنه بصفة عامة لكي يكن حاصل فرب مصنوفة س في أخرى صـ ممكناً (معرفاً) فلا بد من أن يكن عدد أعمدة سي يساوي عدد منرف صـ (Y) إذا كانت س من النوع م المصفونة س . صـ وتكن من النوع م x ن أي أن نوع المصنونة س . صـ يتحدد تمامأ من عدد صفوف س وعدد أعمدة صـ

$$
\begin{aligned}
& \text { أي أن : سِّ } \\
& \text { مثـال (} \\
& {\left[\begin{array}{lll}
r & \cdot & 1 \\
\cdot & 1 & r
\end{array}\right]=\underline{\infty} \cdot\left[\begin{array}{ll}
r- & r \\
0 & \varepsilon
\end{array}\right]=\underline{\sim}} \\
& \text { فأوجد (إن أمكن) : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { : الحـ }
\end{aligned}
$$

(P)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
r & \cdot & 1 \\
\cdot & 1 & r
\end{array}\right]\left[\begin{array}{cc}
r_{-} & r \\
0 & \varepsilon
\end{array}\right]=\underline{\sim} \cdot \underline{\sim}} \\
& {\left[\begin{array}{ccc}
T & r_{-} & \varepsilon- \\
1 r & 0 & 1 \varepsilon
\end{array}\right]=}
\end{aligned}
$$

(ب) صـ ـس لايمكن إيجادها ، لان عدد أعمدة ص لايساوي عدد صفوف سي

$$
\begin{aligned}
& {\left[\begin{array}{ll}
r- & r \\
0 & \varepsilon
\end{array}\right]\left[\begin{array}{cc}
r- & r \\
0 & \varepsilon
\end{array}\right]=\underline{m} \cdot \underline{w}=\underline{r}(\rightarrow) } \\
& {\left[\begin{array}{cc}
r 1- & \wedge- \\
1 r & r \wedge
\end{array}\right]=}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (د) صـr = صـ ص صـ لايمكن إيجادهـا . (لماذا ؟) }
\end{aligned}
$$

أثبت أن عملية ضرب المصفوفات غير إبدالية

$$
\begin{aligned}
& (0-r)\left[\begin{array}{ll}
r_{0} & r \mid \\
r . & I r
\end{array}\right]=\left[\begin{array}{ll}
0 & r \\
0 & r
\end{array}\right]\left[\begin{array}{ll}
0 & r \\
\varepsilon & 0
\end{array}\right]=\sim \\
& (7-r)\left[\begin{array}{ll}
1 . & 7 \\
r 0 & q
\end{array}\right]=\left[\begin{array}{ll}
0 & r \\
\varepsilon & \cdot
\end{array}\right]\left[\begin{array}{ll}
0 & r \\
0 & r
\end{array}\right]=\underline{m}
\end{aligned}
$$

من ($7-r$) ($)$ (0 (ولعلك تلاحظ أن هذا يكفي للإثبات
مثـال (

أوجد حاصل الضرب س ص إذا كانت .

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\cdot & r \\
\cdot & 1-
\end{array}\right]=\underline{\sim} \cdot\left[\begin{array}{cc}
r & 1 \\
7 & r
\end{array}\right]=\underline{m}} \\
& {\left[\begin{array}{ll}
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right]=\left[\begin{array}{ll}
\cdot & r \\
r & 1-
\end{array}\right]}
\end{aligned}
$$

في المـــال (Y مصفوفة صــفرية . ومذه الظــامرة مستحـيلة في الأعداد الحـثقية ع كما ألغت ذلل من

دراستك للرياضيات
إن المثال الأخير والمثال الذي سبقه يبينان بعض أوجه الاختلاف لضرب المصفوفات عن الضرب في الأعداد الحقيقية وإن مذا يثير العديد من الاسئلة منها
(1) هل يوجد عنصر محايد لعملية ضرب المصفوفات ؟
(Y) مل عملية الضرب تجميعية ؟ ؟ (Y) ملـي نظير ضربي لمصفوفة ؟

المثال التالي يوضح ، في حالة المصفوفات المربعة (من النوع ن × ن) ، أن مصفوفة الوحدة ع ن هي عنمر محايد بالنسبة لعملية الضرب . أما إجابة السؤال الثاني فهي
بالإيجاب أي أن : (س • صـ) ع = س : (صـ ع ع)

انظر إلى التمرين (0 - هـ) من التمارين (r r r) لكي تَحقق من هذه المساواة بنفك في حالة المصفوفات المعـطاة في التمرين ، وحيث إن هذا التمرين هو مثال عددي ، فإنه لايعتبر إثباتاً ، كها تعلم ، وإن إثبات كن عملية الضرب تجميعية ليس صعباً رلكنه طويل وملين بالرموذ لذا فإننا لن نقدمه منا . أما فيما يخص النظير الضربي لمصفوفة فإن البند القادم (- Y O) سيتنالل هذ r r r الموضوع في حالة المصفوفات من النوع

> مثـال (

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & \cdot
\end{array}\right]=\underline{\underline{~}}} \\
& \text { فأثبت أن : سِ }
\end{aligned}
$$

ماذا تستنتع من ذلل ؟
الحل :

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\text { rim } & 11
\end{array}\right]=} \\
& \text { س = } \\
& \text { بالمث نجـد أن : مـ } \\
& \text { نستــــتج أن } \\
& \text { r×Y المربعة من النوع } \\
& \text { تدريب (V-Y) } \\
& \text { في المثال (} \\
& \text { مثـال (}
\end{aligned}
$$

فنرجد كلأ من س, ، س ، س ب
: الــل

$$
\begin{aligned}
& T=(Y-) \times(1-)+0 \times \cdot+\varepsilon \times 1=\text { س, } \\
& 17-=(r-) \times r+0 \times(r-)+\varepsilon \times \cdot={ }_{r} \\
& \text { Ir = (r-) } \times \cdot+0 \times 1+\varepsilon \times r={ }_{r} \\
& \text { : }
\end{aligned}
$$

 نوع كل من المصفوفات الآتية :
(
الحل :
r×r r
r×r
(ح
r×r rererer
(() صـ س مصفونة rx r rer

$$
\begin{aligned}
& \text { مثال (} \\
& \text { فإنـوا كانت } \\
& \dot{-}=\underbrace{r+} \underline{m}^{r}-\underline{r}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
q & 1 \\
\varepsilon & \cdot
\end{array}\right]=\left[\begin{array}{ll}
r & 1 \\
r & \cdot
\end{array}\right]\left[\begin{array}{ll}
r & 1 \\
r & \cdot
\end{array}\right]=\underline{r_{m}}} \\
& {\left[\begin{array}{ll}
\cdot & r \\
r & \cdot
\end{array}\right]=\underline{p}^{r} \cdot\left[\begin{array}{ll}
q_{-} & r- \\
r_{-} & \cdot
\end{array}\right]=\underline{m} r_{-}^{r-}} \\
& {\left[\begin{array}{cc}
\cdot & r \\
r & \cdot
\end{array}\right]+\left[\begin{array}{cc}
q_{-} & r_{-} \\
7_{-} & \cdot
\end{array}\right]+\left[\begin{array}{ll}
q & 1 \\
\varepsilon & \cdot
\end{array}\right]==\begin{array}{l}
\text { إنن الطرف الأيمن }
\end{array}} \\
& {\left[\begin{array}{ll}
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right]=} \\
& \text {. الطرف الايسر = }= \\
& \text { تــــمارين (r-r) } \\
& \text { فنأرجد : }\left[\begin{array}{ll}
\cdot & 1 \\
1- & \cdot
\end{array}\right]=\underline{\varepsilon} \cdot\left[\begin{array}{ll}
1- & \cdot \\
\cdot & 1
\end{array}\right]=\underline{\infty} \cdot\left[\begin{array}{ll}
1 & \cdot \\
\cdot & 1
\end{array}\right]=\underline{w} \text { (إذا كانت }
\end{aligned}
$$

(Y) إذا كانـت سِ ، صِ ، عِ كها في التمرين (1) الــسابق وكانت مِي هي مصـفوفة الوحـدة فإثبت أن
(د) (
(إذا كانت r (
:
(£) أجر عملية الضرب فيما يأتي ، إن أمكن ، واذكر السبب في حالة تعذر إجراء عملية الضرب :

$$
\begin{align*}
& {\left[\begin{array}{c}
0- \\
\dot{r}
\end{array}\right]\left[\begin{array}{lll}
7 & 1 & r-
\end{array}\right]} \tag{P}\\
& {\left[\begin{array}{lll}
0 & 1- & r
\end{array}\right]\left[\begin{array}{c}
r- \\
1 \\
\cdot
\end{array}\right]} \\
& \text { (ب) } \\
& {\left[\begin{array}{l}
r \\
1 \\
\varepsilon
\end{array}\right]\left[\begin{array}{llll}
\cdot & \wedge & 1-r
\end{array}\right]} \\
& \text { (} \rightarrow \text {) } \\
& {\left[\begin{array}{lll}
\varepsilon & & r \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
r & 1- \\
1 & \dot{r}
\end{array}\right]} \\
& \text { (} \mathrm{J} \text {) } \\
& {\left[\begin{array}{llll}
r & 1 & r & 1 \\
0 & 1 & 1- & r
\end{array}\right]\left[\begin{array}{cc}
r- & 1 \\
1 & 1-
\end{array}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{ccc}
0 & 1 & q \\
0 & \varepsilon- & r
\end{array}\right]\left[\begin{array}{ccc}
r & r & 1- \\
T & r & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
r & r- & 1 \\
\varepsilon & 1 & r- \\
1 & r & r-
\end{array}\right]\left[\begin{array}{ccc}
r & r- & 1 \\
r & 0 & \varepsilon
\end{array}\right]}
\end{array} \tag{ـ}\\
& {\left[\begin{array}{lll}
r & r- & 1 \\
r & 0 & \varepsilon
\end{array}\right]\left[\begin{array}{lll}
r & r- & 1 \\
\varepsilon & 1 & 0 \\
1 & r & r-
\end{array}\right]}
\end{align*}
$$

$$
\left[\begin{array}{ll}
1 & \cdot \\
\cdot & 1
\end{array}\right]=\underline{\varepsilon} \cdot\left[\begin{array}{cc}
1 & \cdot \\
\cdot & 1-
\end{array}\right]=\underline{\infty} \cdot\left[\begin{array}{cc}
r & 1 \\
r & 1
\end{array}\right]=\underset{\sim}{w}
$$

فبين صحة أو خطان كلمِن العبارات الآتية مع ذكر السبب :

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & 1-
\end{array}\right]=\underline{\infty} \cdot\left[\begin{array}{cc}
r & 1- \\
r & .
\end{array}\right]=\underset{\sim}{\text { (1) }}
$$

$$
\dot{-}=\underline{p}^{r}-\underline{w} r-r(p)
$$

(ـ)

$$
\underline{\underline{\mu}}
$$

هل سِ ، صِ كل منهما نظير ضربي للأخرى ؟ ولماذا؟

$$
\left[\begin{array}{ll}
د & \sim \\
\sim & د-
\end{array}\right]=ص \cdot\left[\begin{array}{ll}
ب & p \\
\dot{p} & ب-
\end{array}\right]=\underline{\sim} \text { (} 1 \text { (إذا كانت }
$$

فأثبت أن :

$$
\begin{aligned}
& \text { (ب) } \\
& \text { (ح } \\
& \text { (د } \\
& \text { (}
\end{aligned}
$$

(0 - r)

سنكفي في مذا البند بدراسة النظير الضربي لمصفوفة مربعة من النوع Y Y Y وسنجيب
على الانسئلة الآتية : متى يوجد نظير ضربي ؟ هل هو وحيد ؟ وكيف نحمل عليه ؟ نبدأ بتعريغ النظير الضربي
تعريــ (Y -) :

النظير الضربي لمصفوفة P من النوع Y بحيث يكن : P ••ب = بِ • لعملية الضرب (أي مصفوفة الوحدة من النوع Y Y Y

سنرمز اللظظير الضربي لمصفوفة Pِ بالرمزِ لاجل الإجابة على السوال : متى يوجد نظير ضربي لمصفوفة مربعة ؟ نعمد إلى تقديم تعريف

$$
\begin{aligned}
& \text { تعريف (} 1 \text {) : } \\
& \text { إذا كانت } \\
& \text { ح }
\end{aligned}
$$

، في بعض الاحيان يستعمل الرمز ه (ويقرأ دلتا) للدلالة على المددة ومن السهل أن تلاحظ أن المقدار : : د - ب حـ هو حاصل ضرب العنمرين الواقعين . في القطر
 لايـرمزان إلى القيمة المطلقة

الانتباه هنا إلى أن الخطين : |

الحل :

$$
r-=\varepsilon \times r-r \times r=\left|\begin{array}{ll}
\varepsilon & r \\
r & r
\end{array}\right|=\underline{p} \text { مصدة (P) }
$$

$$
\frac{1}{r}-=1 \times r-\left(\frac{r}{r}-\right) \times(1-)=\left|\begin{array}{ll}
r & 1- \\
\frac{r}{r}- & 1
\end{array}\right|=ب \text { معدة (ب) }
$$

$$
\left[\begin{array}{ll}
i & 1 \\
i & \cdot
\end{array}\right]=\left[\begin{array}{ll}
r & 1- \\
\frac{r}{r}- & 1
\end{array}\right]\left[\begin{array}{ll}
\varepsilon & r \\
r & r
\end{array}\right]=\underline{Y} \cdot \underline{P}(\rightarrow)
$$

$$
\left[\begin{array}{ll}
i & 1 \\
1 & \cdot
\end{array}\right]=\left[\begin{array}{ll}
\varepsilon & r \\
r & r
\end{array}\right]\left[\begin{array}{cc}
r & 1- \\
\frac{r}{r}- & 1
\end{array}\right]=\underline{p} \cdot \underline{\underline{(}}(\nu)
$$

تستتّج من الفقرتين (د) ، (د) أن كلاً من وِ د بِ نظير ضربي للكخرى ، أي أن :

$$
\begin{aligned}
& \text { مـنال (19-r } \\
& {\left[\begin{array}{ll}
r & 1- \\
\frac{r}{r}- & 1
\end{array}\right]=\underline{\underline{Y}} \cdot\left[\begin{array}{ll}
\varepsilon & r \\
r & r
\end{array}\right]=\underline{p} \text { إذا كا }} \\
& \text { فأرجد : (P) محددة } \\
& \text { ماذا تستتّع من الفترتين (ــ) ، (د) ؟ }
\end{aligned}
$$

إذا كانت
عندما تكن محددة

$$
\left[\begin{array}{ll}
\frac{\mu-}{\Delta} & \frac{\lrcorner}{\Delta} \\
\frac{p}{\Delta} & \frac{\nu}{\Delta}
\end{array}\right]=\left[\begin{array}{cc}
ب- & د \\
p & 2-
\end{array}\right] \quad \frac{1}{\Delta}={ }^{1-p}
$$

$$
\begin{aligned}
\text { فـ فيكن }
\end{aligned}
$$

(1) $\ldots \ldots \ldots$ ́.. $=$

$$
\left[\begin{array}{cc}
ب & p \\
j & ح
\end{array}\right]\left[\begin{array}{ll}
ب- & د \\
p & \rightarrow-
\end{array}\right] \frac{1}{\Delta}=\underline{p}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\Delta & \Delta \\
\Delta & \cdot
\end{array}\right] \frac{1}{\Delta}=} \\
& {\left[\begin{array}{ll}
\cdot & 1 \\
1 & \cdot
\end{array}\right]=}
\end{aligned}
$$

(r) $\ldots \ldots$ • $=$

$$
\left[\begin{array}{cc}
\frac{\mu-}{\Delta} & \frac{\mu}{\Delta} \\
\frac{p}{\Delta} & \frac{\nu-}{\Delta}
\end{array}\right]=\left[\begin{array}{cc}
ب- & د \\
\dot{p} & \sim-
\end{array}\right] \frac{1}{\Delta}=\underline{y}=\frac{1-p}{-}
$$

وأن
ملحـوظة (- - 0)
من أجل الحمل على النظير الضربي لمصفوفة Pِ نتبع الخطوات الآتية :
(I)

غ
وإذا كانت محددة
للمصفوفة P P وعندئذ نتحل إلى الخطوة التالية :

. (Y) (Y)

طبق الطريقة الواردة في الملحوظـة ((19 - Y) (

مثـال (r-r)

$$
\left[\begin{array}{ll}
\cdot & \omega \\
v & \cdot
\end{array}\right]=\underline{\varphi} \cdot\left[\begin{array}{ll}
0 & V \\
1- & r
\end{array}\right]=\underline{P}: \quad \text { إذا }
$$

حيث : س ص
: الهـ
نطبق الخطوات الواردة في الملحوظة (
بالنسبة المصفونة
صفرi $\neq V-=\left|\begin{array}{cc}i & V \\ i- & r\end{array}\right|=\underline{P}$ (1)
إذن للمصفوفة P P نظير ضربي
الخطوتان (Y) • (Y) من الملحوظة تعطينا المصفوفة
$\left[\begin{array}{cc}v & 1- \\ v & r-\end{array}\right]$
${ }^{1-} \underline{P}=\left[\begin{array}{lc}. & \frac{1}{V} \\ 1- & \frac{r}{V}\end{array}\right]=\left[\begin{array}{cc}\cdot & 1- \\ V & r-\end{array}\right] \frac{1}{V-} \quad: \quad$ () ()
بالنسبة للمصفوفة بِ فناختصار نلاحظ انن محددة بِ فيكن النظير الضربي للمصفوفة بـ هو :

$$
\left[\begin{array}{cc}
i & \frac{1}{2} \\
\frac{1}{n} & \cdot
\end{array}\right]=\left[\begin{array}{cc}
0 & ص \\
m & \cdot
\end{array}\right] \quad \frac{1}{ص}=1-
$$

إن مذا يعني أنه إذا كانت بِ مصفوفة تطرية عناصرها مغايرة المصفر فإن نظيرها الفربي
مصنففة تطرية أيضا ، وعناصر تطرها هي متَلويات عناصر التطر في بِ
بالنسبة الممفوفة P P

باتباع خطوات إيجاد النظير للمصفوفة $\underline{\text { • }}$

$$
\left[\frac{1}{\infty}-\frac{1}{\infty} \frac{\frac{1}{\omega V}}{v}\right]=1-\left(ب \frac{p}{v}\right)
$$

تدريب (- -
في المــــــال (r - r) :

$$
{ }^{1-}{ }^{1-p}={ }^{1-}(\underline{-} \text { ب })
$$

1 - هل مصيح أن :
إذا لم يكن كذلك فما هو الشرط على س ، ص كي يكن هذا صحيحاً ؟

$$
\begin{aligned}
& \text { ملحـوظة (1-1) } \\
& \text { في المثال (Y - Y) لعلك تلاحظ أن : } \\
& \text { محددة P P } \\
& 1.0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\cdot & m \\
ص & \cdot
\end{array}\right]\left[\begin{array}{ll}
. & V \\
1- & r
\end{array}\right]=\underline{ب} \cdot \underline{P}} \\
& {\left[\begin{array}{ll}
0 & w V \\
0- & w
\end{array}\right]=} \\
& \text { محددة المصفوفة P P - ب }
\end{aligned}
$$

 لكن الذي يهمنا هنا مو بيان ما يمكن أن نستنته من مذه الحقية
لنغرض أنه يوجد نظير ضربي المصفوفة عِ التي هي من النوع

كذلك نستتج أنه إذا وجد نظير ضربي لممغوفة Pِ فإن محددة P
الموضوع • في النظرية (Y -

مثـال (r1-r)
أي من المصفوفات الآتية لها نظير ضربي ؟ أوجده في حالة الإيجاب .
$\left[\begin{array}{cc}1 . & r- \\ 0 & 1-\end{array}\right]$
(ب) $[\dot{\varepsilon}$
$\left.\begin{array}{l}r \\ r\end{array}\right]$
$\left[\begin{array}{ll}1 . & 7 \\ 0 & r\end{array}\right]$
(د) $\left[\begin{array}{l}1- \\ 1\end{array}\right.$
$\left.\begin{array}{l}1 \\ 1\end{array}\right]$
الحل :
صغ $\neq \Lambda=\left|\begin{array}{ll}\cdot & r \\ \varepsilon & r\end{array}\right|=\Delta=\Delta=$ المددة (p)
إذن لهذه المصغوفة نظلير ضربي هو :

$$
\left[\begin{array}{ll}
\cdot & \frac{1}{r} \\
\frac{1}{\varepsilon} & \frac{r}{\Lambda}-
\end{array}\right]=\left[\begin{array}{cc}
r & \varepsilon \\
r & r-
\end{array}\right] \frac{1}{\Lambda}
$$

$$
\begin{aligned}
& \left|\begin{array}{cc}
1 . & Y- \\
0 & 1-
\end{array}\right|=\Delta=\Delta \text { (ب) } \\
& (1-\times 1 \cdot)-0 \times(Y-)= \\
& \text { (1- }=1 \cdot+1 \cdot-=
\end{aligned}
$$

إذن ليس للمصفوفة نظير ضربي .

$$
\begin{aligned}
& \text { صفر } \neq r=\left|\begin{array}{ll}
1- & 1 \\
1 & 1
\end{array}\right|=\Delta=\Delta=\text { (حد المدة } \\
& \text { إذن لهذه المصفوفة نظير ضربي مو : } \\
& {\left[\begin{array}{ll}
\frac{1}{r} & \frac{1}{r} \\
\frac{1}{r} & \frac{1}{r}-
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1-
\end{array}\right] \frac{1}{r}} \\
& \left.\left|\begin{array}{ll}
1 . & 7 \\
0 & r
\end{array}\right|=\Delta=\Delta \text { (المحددة }\right) \\
& \text { = } 1 \cdot \times r-0 \times 7=
\end{aligned}
$$

إذن ليس لهذه المحفوفة نظير ضربي .
مثـال (

احسب قيم س التي تجعل المصفوفة الآتية ليس لها نظير ضربي .

$$
\left[\begin{array}{cr}
\omega & r- \\
r & r
\end{array}\right]
$$

الحـل :
ليس المصفوفة أعلاه نظير ضربي عندما تكن محددتها = صصفرأ

$$
r-\left(\left.\begin{array}{r}
- \\
\sim-r-r \\
r
\end{array} \right\rvert\,\right.
$$

\square

$$
\begin{array}{r}
\varepsilon-v-m= \\
\cdot=\varepsilon-m-=
\end{array}
$$

إذن س = - ع . أي عند مذه التيمة لايوجد نظلير فربي للمصفونة المعطاة .

$$
\begin{aligned}
& \text { احسب تیم س التّ تجـعل المصفوفة } \\
& \text { تـــمـاريـن (r-£) }
\end{aligned}
$$

(1) أوجد النظير الضربي لكل من المصفوفات الآتية إن أمكن ذلك :

$$
\begin{align*}
& {\left[\begin{array}{cc}
q & Y_{-} \\
T_{-} & r
\end{array}\right](ب)\left[\begin{array}{ll}
r & \varepsilon \\
r & \cdot
\end{array}\right](P)} \\
& {\left[\begin{array}{ll}
r & 1 \\
\varepsilon & r
\end{array}\right](د)\left[\begin{array}{ll}
r & r \\
r & r
\end{array}\right](\sim)} \\
& {\left[\begin{array}{cc}
r & r \\
r & 1-
\end{array}\right] \quad(0)\left[\begin{array}{ll}
r & 1- \\
\varepsilon & \cdot
\end{array}\right]} \tag{j}\\
& (\rightarrow)
\end{align*}
$$

(Y) أحسب قيم س التي تجعل كلأ من المصفوفات الآتية ليس لها نظير ضربي:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
r & 1-س \\
r-m & l
\end{array}\right] \text { (د) }\left[\begin{array}{ll}
\varepsilon & (\sim \\
r-m & r
\end{array}\right] \text { (ح) }}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
r- & r \\
\varepsilon & \cdot
\end{array}\right]=\underline{m}(r)} \\
& {\left[\begin{array}{cc}
1 & \frac{1}{r} \\
\frac{1}{\varepsilon} & \cdot
\end{array}\right]=1-\underset{\text { فاثبـت أن }}{ }} \\
& {\left[\begin{array}{ll}
p- & p \\
ب & \cdot
\end{array}\right]=\infty \quad \text { () () }} \\
& \text { فاثـبت أن ص-1 } \\
& \underline{p}={ }^{1-p}-1 \text { (إذا كانت } 10 \text { (0) } \\
& {\left[\begin{array}{ll}
r & r \\
r & \wedge
\end{array}\right]=\underline{\infty} \cdot\left[\begin{array}{ll}
r & 1 \\
\Lambda & r
\end{array}\right]=\underline{\omega} \text { (T) }}
\end{aligned}
$$

فأجـب عما يلي :
(احسب كلاْ من س-1 ، صـيا (

أي أن (سِ-1)

Y - Y بعض التطبيقات البسيطة على المصفوفات : أولاً : حل نظام معاد إذا أُعطينا نظام المعادلتِين
(v-r) \quad P
فانه يمكن كتابتها بالصيغة المصفوفية التالية

$$
\begin{aligned}
& (\wedge-r) \cdots \cdot\left[\begin{array}{l}
J \\
J
\end{array}\right]=\left[\begin{array}{l}
\omega \\
\nu
\end{array}\right]\left[\begin{array}{cc}
ب & p \\
\nu & \rightarrow
\end{array}\right] \\
& \text { وإذا فرضنا : }
\end{aligned}
$$

فانْه يمكن كتابة المعادلتين في (() بمعادلة مصفوفية واحدة على الهيئة

$$
(9-r) \quad \geq=\underline{m} p
$$

تسمى المصفوفة P مصفـوفة المعاملات ، سِ مصفوفة المجاهيل ،

$$
\begin{aligned}
& \text { إذا كانت محددة P P = } \\
& \text { فمن الممكن إيجاد حل اللمعادلة (} 1 \text { (} 9 \text {) كما يلي }
\end{aligned}
$$

رواضح أن بمقدرنا الآن إيجاد المهولين س ، ص (اللآين بشكلان حل نظام المعادلتين
الأصليتِين) بدلالة الثُوابت العددية P ، ب ، حـ ، د ، ل ، ك

ملحـوظة (r -

إشارة إلى الملحوظة (-
 المعـادلتين (كـبـرة في حـل أنظمة المعادلات الخطية

مثـال (rr-r
حـل نظام المعادلتين الآتيتين باستخدام المصفوفات وتحقق من الناتج r $=$ r

الحل :

$$
\begin{aligned}
& \text { نكب المعادلة المصفوفية } \\
& {\left[\begin{array}{l}
1 \\
r
\end{array}\right]=\leadsto \cdot\left[\begin{array}{l}
w \\
\nu
\end{array}\right]=\underline{w} \cdot\left[\begin{array}{ll}
0 & \varepsilon \\
1 & r
\end{array}\right]=\underline{p}} \\
& a=\left|\begin{array}{ll}
0 & \varepsilon \\
7 & r
\end{array}\right|=\Delta=\underline{p} \\
& \text { إذن يوجد نظير ضربي لـ ِـِ ويكن الحل: } \\
& \geq{ }^{1-p}=\underline{m} \\
& {\left[\begin{array}{l}
1 \\
r
\end{array}\right]\left[\begin{array}{ll}
0- & r \\
\varepsilon & r-
\end{array}\right] \frac{1}{9}=} \\
& {\left[\begin{array}{c}
\frac{\varepsilon}{9}- \\
\frac{0}{9}
\end{array}\right]=\left[\begin{array}{l}
\varepsilon- \\
0
\end{array}\right] \frac{1}{9}=}
\end{aligned}
$$

أي أن س =
التحـقـيق :

بالتعويض المباشر في المعادلتين أعلاه بقيمتي س ، ص نجد أن :

$$
\begin{aligned}
& 1=\frac{9}{9}=\frac{0}{9} \times 0+\left(\frac{\varepsilon-}{9}\right) \times \varepsilon \\
& r=\frac{11}{9}=\frac{0}{9} \times r+\left(\frac{\varepsilon-}{9}\right) \times r
\end{aligned}
$$

مثـال (r£-r) :
حل نظام المعادلتين الآتيتين مستخدمأ المصفوفات

$$
\begin{aligned}
& \text { (1.-r) = } 1+r \text { + }+ \text { + } \\
& (I I-Y) \cdots . . V+m=0
\end{aligned}
$$

الحـ :
نكتب المعادلتين (- - . 1) و (

$$
\begin{aligned}
& \text { فتكون المعادلة المصفوفية هي } \\
& {\left[\begin{array}{l}
1- \\
V
\end{array}\right]=2 \cdot\left[\begin{array}{l}
\omega \\
v
\end{array}\right]=\underline{m} \cdot\left[\begin{array}{ll}
r & r- \\
0 & 1-
\end{array}\right]=\underline{P}} \\
& . \neq v_{-}=\left|\begin{array}{ll}
r & r- \\
0 & 1-
\end{array}\right|=\Delta=\underline{P} \text { محددة }
\end{aligned}
$$

P 」

$$
\overbrace{}^{1-} \underline{P}=\left[\begin{array}{l}
m \\
\infty
\end{array}\right]=\underline{\text { إن : }}
$$

مثـال (ro-r)

تعهد مقالل أن يبني منازل وفق نموذجين P ، ب في كل من الرياض ومكة المكرمة وجدة ،
فإذا تمكن في العام الاكل من بناء :
Ir منزلًا في الرياض من النموذجP ،
. منزلًا في الرياض من النموذج ب ، r.
^1^ منزلًا في مكة المكرمة من النموذج P ،
II منزلُّ في مكة المكرمة من النموذج ب ،

$$
17 \text { منزلُّ في جدة من النموذ جP ، }
$$

Ir منزلاْ في جدة من النموذج ب ،
 (P) تمثيل ما بناه في العام الاهل في مصغوفة

$$
\begin{aligned}
& {\left[\begin{array}{c}
1- \\
v
\end{array}\right]\left[\begin{array}{cc}
r_{-} & 0 \\
r_{-} & 1
\end{array}\right] \frac{1}{v_{-}}=} \\
& {\left[\begin{array}{l}
\mathrm{Y}- \\
10-
\end{array}\right] \frac{1}{\mathrm{~V}}-=} \\
& {\left[\begin{array}{c}
\frac{Y 7}{V} \\
\frac{10}{V}
\end{array}\right]=} \\
& \frac{10}{V}=\text { أي انن : س } \\
& \text { ثانياً : تطبيقـات متنوعة : }
\end{aligned}
$$

(ب) تمشيل ها بناه في العام الثاني بمصفوفة .
(ح) تميّل ما بناه في العامين معأ بعصنوفة)
(د) إذا كان المنزل الواحد من النموذج P ـكـف س ريالأ
بينما يكف المنزل الواحد من النموذج ب ، ص ريالأ ، فاكب مصنونة تمث مجموع التكاليف الكلية لكل نموذ ع على حدة في كل مدينة .
: الــل
 الأول منها عدد المنازل في الرياض والصف الثاني عدد المنازل في مكة المكرمة والمف الاالث عدد المنازل في جـدة . بينما يمثل العمود الأل من P عدد المنازل من النموذج P الثاني عدد المنازل من النموذج ب وبذلك نكت

$$
\begin{aligned}
& {\left[\begin{array}{cc}
Y & 1 Y \\
11 & 1 \Lambda \\
1 Y & 17
\end{array}\right]=\underline{P}} \\
& \text { Pع = (ب) } \\
& \underline{P} \varepsilon+\underline{P}=\underline{\text { }}=\text { (ح) } \\
& P_{0}=
\end{aligned}
$$

(المصفوفة المطلوبة
ونترك للطالب كتابة lاصفوفات في (ب) ، (ح) ، (د) بشكل تفصيلي
مثـال (YY-) :

خمسة طلاب P ، ب ، ح ، د ، هـ كـ كانت درجاتهم على الترتيب كما يلي :

المـطاـــوب :
$0 \times$ X تمثيل هذه المعلومات في مصنوفة (P)
(ب) إذا كانت الارجات السابتة محسوبة من 1 (1 . 1 (انت الدرجة اللازمة النجاح في
الرياضيات . 7 ، الفيزياء .0 ، الكيمياء .0 فكم طالباً رسب في الرياضيات ؟ وكم
طالباً رسب في الفيزياء وكم طالباً رسب في الرياضيات والفيزياء معاً ؟ وكم طالباً رسب
في الرياضيات والكيمياء معاً ؟ وكم طالباً رسب في الفيزياء والكيمياء؟ وكم طالباً رسب
في المواد الثلاثة ؟ وكم طالباً نجح في المواد الثلثة ؟
(ح) إذا زيدت درجات الطلاب الخمسة بنسبة . ا٪ في المواد الڭلاثة فاكتب مصفوفة تمثل مذه
الزيادة .
(د) اكتب مصفوفة تمثل درجاتهم بعد الزيادة ومنها حدد الطلاب الراسبين في كل مادة . وكم
طالباً نجح في المواد الثاث معاً .
: الحـل
(P) المصفوفة المطلوبة من النوع r × 0 ، يعني أن المواد الثّلا تمث على الترتيب بصفوف

المصفوفة ، بينما الطلاب الخمسة يمثّن على الترتيب بأعمدة المصفوفة .
نفرض أن س هي المصفوفة المطلوبة ونكب .

$$
\left[\begin{array}{ccccc}
V . & 7 r & 00 & \varepsilon 0 & 07 \\
\varepsilon 7 & V Y & 70 & 7 . & 0 . \\
r . & 0 . & 7 . & \varepsilon V & 77
\end{array}\right]=\omega
$$

(ب) من المصفوفة س يمكن معرفة المعلومات المطلوبة ونلخصها في الجلول الآتي :

حيـث ر ترمـز للرياضيات ، ف للفـيزياه. ، ك الحـيمياء . عدد الطلاب الناجحين في المواد الثلاث كمها = 1
(ح) $\frac{1}{1}$ (حمفوفة الزيادة
(د) المصفوفة التي تمث درجات الطلاب بعد الزيادة هي :

$$
\left[\begin{array}{lllll}
V V & 79 . r & 7.0 & \varepsilon 9.0 & 71.7 \\
0.7 & V 9 . Y & V 1.0 & 77 & 00 \\
r Y & 00 & 77 & 01 . V & V Y .7
\end{array}\right]=\underline{m} \frac{1}{1 .}+\underline{m}
$$

ومن هذه المصفوفة الجديدة نجد أن :

| $」$ | ف المادة | |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |

ع ع = =

تـــــاريـن ((ז-0)
() استخدم المصفوفات في إيجاد حل كل نظام من معادلات الدرجة الاولى الآتية :

$$
\begin{aligned}
& \text { r= = }
\end{aligned}
$$

$$
\begin{aligned}
& v=\infty \frac{1}{\varepsilon}+\infty \frac{1}{r} . \quad 1-=\infty \frac{1}{r}+\infty \frac{1}{r} \text { (0) }
\end{aligned}
$$

 ب , اع قطعة من حـ ، اr قطعة من د يومياً ، أما المصنع الیالث فينتج يومياً

r×× وض (P)
(ب) وضّ هذ ع المعلومات في مصفوفة من النوع
(ح) كتابة مصفوفة تمثل إنتا ج المصانع الثالاثة لمدة .
() إذا كانت الشبركة تبيع كل قطعة من المصنع الأنل بمبلغ . اع ريالأ وكل قطعة من
المصنع الاني بمبلغ .ا فاكتب مصفوفة تمــُل دخـل الشركة اليومي من بيع القطع P ، ب ، حـ . د فـ في

مصانعها الث2لاثة معاُ
(「) ثلاثة طلاب يتنافسن الحصول على درجات عالية في الفصل ، وقد اتفقوا كما يلي :
إذا تغلب P على ب فإن ب يشتري هدية لزميله P بمبلغ . . ا ريال
وإذا تغلب P على حـ فإن حـ يشتري هدية لزميله P بمبلغ . A ريالأ
وإذا تغلب ب على P فإن P يشتري هدية لزميله ب بمبلغ . 9 ريالاً
وإذا تغلب ب على حـ فإن حـ يشتري لزميله ب هدية بمبلغ Vo ريالأ
وإذا تغلب حـ على P فإن P يشتري هدية لزميله حـ بمبلغ . 1 ريالأ
وإذا تغلب ح على ب فإن ب يشتري لزميله حـ هدية بمبلغ . 9 ريالأ
المطابـــوب :
تميُل مذه المعلومات بمصفرفة ، بحيث يكن الفائز في مـبدأ كل صن والخاسر في مقدمة كل
عمود . وإذا رمزنا لهذه المصفوفة بالرمز س = [سـى هـ] ، فماذا تـساوي سسى ى ؟ وهـل

(£) يوجد ثلاتح طرق تؤدي من P إلى ق وطريق واحد يؤدي من ب إلى ق ، وطريق واحد من حـ إلى ق . كها يوجد طريق واحد من P إلى ك ، ويوجد طريق واحد من ب إلى ك ، وهناك

ثلاثة طرق من حـ إلى ك والمطلوب :
(P)
(ب) إذا وجـدت ثلاثة طـــق من ق إلى س وطـريــقان من ق إلى ص وأربعة طرق من

(ح) اضرب المصفوفة المذكرة في (P) بالمصفوفة المذكوة في (ب) .
(د) ماهمي المعلومات المعطاة بعناصر المصغوفة المذكوة في (ح) ؟
 أولًا : اسـتخـدام مــددات الـرجـة الثانية :

إذا كانت
يدعى محددة P • ويرمز له بالرمز :
محددة

يقال إن
حــث : عنمرا المـف الاهل هــا : P ، ب ب .

عنمرا العمود الثاني هـا : ب ، ، د .
111

والآن إذا كان لدينا نظام معادلتين آنيتين في مجهولين س ، ص

$$
\begin{aligned}
& (Y-Y) \cdots \cdot . . \quad J= \\
& \text { (} 1 \text { r }- \text { r } \text {) }
\end{aligned}
$$

فابنا ندعو الأعداد P ، ب ، حـ ، د المعاملات . أما العددان ل و ك ك فيسميان الثوابت .
نسعى لاحظ أن معاملي المجهل س يكونان العمود الاول للمحددة ه هأن معاملي المههل ص يكرنان العمود الثاني للمحددة نسمى نضم الثابتين ل ، ك في العمود الاول بدلأ من معاملي س (P ، دـ) . كا نسمي |ح المحددة ه بانن نضّ الثابتين ل ، ك في العمود الثاني بدلأ من معاملي ص (ب ، د) . والآن بفرض أن ه =

 المعادلة : (P د - ب

$$
\begin{aligned}
& \text {. } \rightleftharpoons
\end{aligned}
$$

تدريب (11-Y)
بـيِّن أن القيـمة الواردة للمجهـــل ص في (

$$
\begin{aligned}
& \text { ملحـوظة (}
\end{aligned}
$$

 قيمتي س ، ص اللتين نحصل عليهما من المعادلتِين (Y-Y (Y)، (Y-Y) بطريقة الحذف المعتادة . مثـال (r

حـل نظام المعادلتين الآتيتنين باستخدام المحددات

$$
\text { r = ص - } 0 \text { r }
$$: الحـل

باستخدام الصيغتين الواردتين في (Y

$$
\begin{aligned}
& \frac{I \varepsilon}{I I}-\frac{Y \Lambda}{Y Y-}=\frac{\left|\begin{array}{lr}
Y- & Y \\
I & 0
\end{array}\right|}{Y-}=\frac{\Delta \Delta}{\Delta}=0
\end{aligned}
$$

مثـال (r r) :

حــل نظام المعادلتين :
مثـال (rq r) :

حل
: الهـ
إن المجهولين هما م ، ن ، نضـع المعادلتين بالشكل :

$$
\varepsilon-=\dot{v}+1, \quad \varepsilon=\dot{u} r+r
$$

ثم نوجد قيمتي م ، ن كما يلي : -

$$
\left.\begin{array}{rl}
\frac{\Lambda-}{r \mid} & \left.=\frac{\left|\begin{array}{ll}
r- & \varepsilon \\
1 & \varepsilon-
\end{array}\right|}{\mid r} \frac{r}{r} \right\rvert\, \\
1 & 7
\end{array} \right\rvert\,=\frac{\Delta}{\Delta}=r
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { V- الحل } 1
\end{array}\right. \\
& \cdot=-\dot{r}=\frac{\left|\begin{array}{ll}
V- & \cdot \\
1- & \cdot
\end{array}\right|}{\left|\begin{array}{ll}
V- & 11 \\
1- & r
\end{array}\right|}=س \\
& \text { - }=-\frac{\dot{r}}{r}=\frac{|\dot{r}|}{r}=0
\end{aligned}
$$

إذا كانت ب

محددة المصفوفة P Pتعرف بعدة طـق نختار منها الطريقة التالية :
تسمى أعمدة كما هو واضح
مثال (
إذا كانت

$$
\begin{aligned}
& \text { محددة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { والطرف الأيسر يحصي ثلاث محددات من الدرجة الثانية نحصل عليها كما يلي : - } \\
& \text { P } \quad \text { ه بعد حذف الصف والعمود المتقاطعين في } \\
& \text { ه } \Delta \text { بعد حذف الصف والعمود المتقاطعين في ب } \\
& \text { (} \Delta \text { بعد حذف الصف والعمود المتقاطعين في حـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { = } \boldsymbol{\Delta}=\underline{P} \text { : الحل } \\
& \left|\begin{array}{ll}
1 & \varepsilon \\
\cdot & 1-
\end{array}\right| \times+\left|\begin{array}{cc}
1 & \varepsilon \\
r & 1-
\end{array}\right| r-\left|\begin{array}{cc}
1 & 1 \\
r & 1
\end{array}\right|=\left|\begin{array}{ccc}
\dot{i} & r & 1 \\
r & \varepsilon & 1-
\end{array}\right| \\
& \text {. }+9 \times r-r \times 1= \\
& 17-= \\
& \text { مثـال (} \\
& \text { جد محددتي المصغوفتين : } \\
& {\left[\begin{array}{lll}
1 & \cdot & \varepsilon \\
0 & \cdot & r \\
r & \cdot & V-
\end{array}\right]=\underline{Z} \cdot\left[\begin{array}{ccc}
0 & r & 1 \\
0 & r & 1 \\
i & V & r
\end{array}\right]=\underline{P}}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 0+(\varepsilon-) \times r-1 r-= \\
& \text { صفراi }=0+\wedge+i r-=
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \times 1+r 9 \times \cdot-\ldots \times \varepsilon= \\
& \text { = }
\end{aligned}
$$

حل أنظمة معادلات الدرجة الأولى في ثلاثة مجاهيل

إذا كان لاينا نظام المعادلات التالي في ثلاثة مجاميل س ، ص ، ع :

$$
\begin{aligned}
& \text { (} 17-r \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& (i v-r) \\
& \text { م } \boldsymbol{\sim} \\
& \text { (} 11-r \text {) } \\
& \text { م }=\text { = }
\end{aligned}
$$

فابنه بطريقة مشابهة لما فعلنا في حالة النظام الحادي على معادلتين بمجهولين ، نجعل :

س س س ه

$$
\begin{aligned}
& \text { (} 1 \wedge \text { - }) \\
& -\frac{\varepsilon}{\Delta}=\varepsilon \cdot \frac{\Delta \Delta}{\Delta}=\sim, \frac{\mu \Delta}{\Delta}=س \\
& \text { مثـال (rrre) : }
\end{aligned}
$$

أوجد مجموعة الحـــلـ لنظام المعادلات الآتية :

$$
\begin{aligned}
& (19-r) \\
& (r-r) \\
& (r \mid-r)
\end{aligned}
$$

$$
\begin{aligned}
1 & =\varepsilon-ص r+m \\
\cdot & =\varepsilon+\rho r+m r \\
1- & =\varepsilon r+\infty+m r
\end{aligned}
$$

سنستخدم طريقتين للحــل ، الأولى بواسطة المدددات والأخرى بطريقة الحذف .
(1) الحلـ بـواسـطـة الحـددات

$$
\begin{aligned}
& \varepsilon=(\tau-r) \times(1-)+(r-\varepsilon) \times r-(1-\varepsilon) \times 1= \\
& \left|\begin{array}{ccc}
1- & r & 1 \\
1 & r & \cdot \\
r & 1 & 1-
\end{array}\right|=m \Delta=m \text { محدة }
\end{aligned}
$$

$$
\begin{aligned}
& r-=(r+\cdot)(1-)+(1+\cdot) \times r-(1-\varepsilon) \times 1= \\
& \qquad\left|\begin{array}{ccc}
1- & 1 & 1 \\
1 & \cdot & r \\
r & 1- & r
\end{array}\right|=\infty \Delta=\infty \text { محددة المجهول } \\
& r=(\cdot-r-) \times(1-)+(r-\varepsilon) \times(1)-(1) \times 1=
\end{aligned}
$$

(؟ (الحـل بـطريـقـة الحـذف :

$$
(19-r)
$$

$$
1=\varepsilon \text { س } 1=
$$

$$
(r \cdot-r)
$$

r r +

$$
(r I-r)
$$

r

بضـرب المعـادلة (19 - Y) في (Y - Y) وجمعها مع المعادلة

$$
\begin{array}{ll}
(r Y-r) & Y-=\varepsilon r+\infty \varepsilon- \\
(r r-r) & \varepsilon-=\varepsilon \circ+\infty \wedge-
\end{array}
$$

وبالتعويض في ($19-1$) بالقيمتين : ص =

$$
\begin{aligned}
& \text { •偣 : } \\
& \frac{1}{Y}=\frac{Y-}{\varepsilon-}=
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & r & 1 \\
i- & r & r \\
i- & 1 & r
\end{array}\right|=\varepsilon \Delta=\varepsilon \text { مaدة المجهل } \\
& \text {. }=(7-r) \times 1+(r-) \times r-(r-) \times 1= \\
& -\frac{1}{r}-=\frac{Y-}{\varepsilon}=\frac{m \Delta}{\Delta}=m: \dot{\text { ! }} \\
& -\frac{1}{r}=-\frac{r}{\varepsilon}=\frac{\Delta \Delta}{\Delta}=v \\
& \text { - }=-\dot{\varepsilon}=\frac{\varepsilon \Delta}{\Delta}=\varepsilon
\end{aligned}
$$

$$
\frac{1}{r}-=\frac{1}{r} \times r-1=0
$$

وهكا: نكمن قد حملنا على مجموعة الحل نفسها التي حصلنا عطيها بالحل بواسطة المحددات .
ملحـوظة (
!إن طريقة حل نظام ثلاث معادلات خطية باستخدام المحددات ماهي إلا أسلوب تنظيمي لطريةة
الحذف كها نوهنا إلى ذلك في حالة نظام معادلتين .
مثـال (rr-r

$$
\begin{aligned}
& \text { حــلـ نظام المعادلات التاليـة : } \\
& 1=\varepsilon r+ص-m \\
& r=\quad ص r+m \\
& r=\quad \varepsilon+س-
\end{aligned}
$$

: الحـل

$$
\begin{aligned}
& \text {, } I r=\left|\begin{array}{ccc}
r & 1- & r \\
i & r & r \\
i & \cdot & i-
\end{array}\right|=\Delta \\
& \text {, } 1 \varepsilon-=\left|\begin{array}{ccc}
r & 1- & I \\
i & r & r
\end{array}\right|=m \Delta \\
& , r \varepsilon=\left|\begin{array}{ccc}
r & 1 & r \\
i & r & r \\
r
\end{array}\right|=0 \Delta \\
& r_{0}=\left|\begin{array}{ccc}
1 & 1- & r \\
r & r & r \\
r & r & 1-
\end{array}\right|={ }_{c} \Delta \\
& \text { معا تقدم نجد أن } \\
& \frac{r_{0}}{1 r}=\varepsilon \cdot \frac{r \varepsilon}{1 r}=\sim \cdot \frac{1 \varepsilon}{1 r}-=m
\end{aligned}
$$

حــل نظــام المعـــادلات الآتيـــة

$$
\begin{aligned}
& \text { req0= } \\
& \text { rever rev } \\
& \text { 1-ص-ص }
\end{aligned}
$$

: الحـل
نكتب نظام المعادلات بالصسوة التاليــة :

$$
\begin{aligned}
& \text { r = ع - } \\
& 1=\varepsilon-\infty+r^{r} \\
& 1-=\varepsilon+\infty+\infty- \\
& I-=\left|\begin{array}{ccc}
0- & r- & r \\
1- & 1 & 1 \\
1 & 1 & 1-
\end{array}\right|=\omega \Delta, \quad 11-=\left|\begin{array}{lll}
0- & r- & 1 \\
1- & 1 & r \\
1 & 1 & 1-
\end{array}\right|=\Delta \\
& r=\left|\begin{array}{ccc}
r & Y- & 1 \\
1 & 1 & Y \\
1- & 1 & 1-
\end{array}\right|=r \Delta \quad, \quad r=\left|\begin{array}{lll}
0- & Y & I \\
1- & 1 & Y \\
1 & 1- & 1-
\end{array}\right|=\Delta \Delta \\
& \frac{Y-}{I I}=\varepsilon \cdot \frac{Y-}{I I}=ص, \frac{T}{I I}=m: 0
\end{aligned}
$$

تساوي صفرأ إذا كانت عناصر أحد أعمدتها كلها أصفارأ
(1) عناصر العمود الأنل كلها أصفار

(Y) عناصر العمود الثاني كلها أصفار
 (「) عناصر العمود الثالث كلها أصفار

نبرهن إحدى الحالات ولتكن (1) ونترك للطالب إبّات الحالتين الباقيتين في التمرين (.1) من التمارين العامة .
(1) عناصر العمود الاول ك大ها أصفار بمعنى أن : =

$$
\left[\begin{array}{ll}
\overline{1} & \cdot \\
\cline { 1 - 1 } & \cdot
\end{array}\right] \sim+
$$

=

وهو المطلــــوب
مثـال (ry r)
اســتفد من المــال السابق في حــل النظام الآتي :
-= $=$ - $r+\boldsymbol{r}$

- =
. $=\varepsilon \frac{1}{r}+\infty \frac{r}{\varepsilon}+\infty 0$

الحـل :

$$
\frac{r}{\varepsilon}-\left|\begin{array}{ccc}
1-r & r \\
1 & r- & 1 \\
\frac{1}{r} & \frac{r}{\varepsilon} & 0
\end{array}\right|=\Delta
$$

,
بلا كانت عنامر العمود الثاني من هص أصفاراً فإن هص = . .
بلا كانت عناصر العمود الثالث من
مما تقدم نجد أن : س = ص = ع =
يمكن أن نستنتع من المثـال (Y - Y) أن أي نظـام معادلات من الدرجة الاولى في

$$
\begin{aligned}
\text { (Y) (Y) محددة معاملاته }
\end{aligned}
$$

ومن السهل على الطالب أن يعي أن مذه الحقيقة تسري بالنسبة لأنـطمة المعادلات الخطية ذات المجهولين أيضاً . نختم مذا البـند بالثـــال الآتي :

أوجد تيم هـ التي تجعل لنظام المعادلات الآتية حلا :

$$
\begin{aligned}
& \text { س + + صـ ص } \\
& \text { • }
\end{aligned}
$$

:
يكن لهذا النظام حل عندما تكنف محددة معاملاته

$$
\begin{aligned}
& . \neq \rightarrow r-1-\rightleftharpoons\left|\begin{array}{ll}
\Delta & 1 \\
1- & r
\end{array}\right|=\Delta \\
& \frac{1}{r}-\neq \rightarrow
\end{aligned}
$$

ولعالك تلاحظ أنـ :

في حالة مـ =

$$
\begin{aligned}
& (r \varepsilon-r) \\
& \left(r_{0}-r\right)
\end{aligned}
$$

r

بضرب المعادلة الالمى في (Y) نحمل على :

$$
(Y T-Y)
$$

r

فلو فرضنا وجود حل مت س = س ، ص = صب فإن مذا يقودنا إلى تناقض لانه حسب
r - $\left.\frac{1}{Y}-\right\}-$ -

تـــماريـن (†-1)
(1) أحسب قيم المحددات الآتية :

$$
\begin{gathered}
\left|\begin{array}{ll}
\varepsilon & \varepsilon \\
r & r
\end{array}\right| \\
\left|\begin{array}{lll}
\varepsilon & 0 & r \\
\tau & \varepsilon & r \\
\Lambda & \tau & \varepsilon
\end{array}\right|
\end{gathered}
$$

$$
\begin{aligned}
& \text { وحسب (} \\
& \text { • = }- \text { r }:(\text { ro-r) }
\end{aligned}
$$

(Y) أوجد حل كلٍ من الانظمة الآتية باستخدام المحدات :

$$
\begin{align*}
& 1-=1 \\
& \text { • }=ص \text { (i) } \\
& r=v \\
& 1=ص r+r \\
& \text { • = JV - J7 } \\
& \text {. }=\int r+J \varepsilon \\
& \varepsilon+ص r=\omega r(ح) \tag{د}\\
& \text { 1- } 1-\text { = }
\end{align*}
$$

(Y) استخدم المصفوفات لحل أنظمة المعادلات في التمرين (Y)
() حل نظام المعادلات بثلاث طرائق وحقق النتائج

$$
r=ص \text { r } r \text { r } \quad 1=1=\text { r } \quad 1
$$

(0) أوجد قيم هـ التي تجعل لنظام المعادلات الآتي حلا

$$
\text { ع }=ص \text { س }
$$

(7) استخدم المددات وطريـقـة الحـذف في حل أنظمة المعادلات الآتية

$$
\begin{aligned}
& 1=\varepsilon+\infty+\infty \\
& 1-=\varepsilon-\infty-\infty r(P) \\
& r=ص r+\infty r \\
& \text { • }=J+v r+س- \\
& 1=J-ص r-\int r(ب) \\
& \text { • }=J r+ص+\infty \\
& \varepsilon+r+ص r=m r \\
& \varepsilon=\varepsilon+\infty-\infty r(ح) \\
& r+m-=\varepsilon+\infty \\
& 1=\varepsilon \frac{r}{\varepsilon}+\infty-\frac{r}{r}-\infty-\frac{1}{r}- \\
& r-=\varepsilon-\infty+\omega r(د) \\
& \text {. }=\varepsilon^{r}+\infty \text { - }
\end{aligned}
$$

(V) أوجد قيم هـ التي تجعل لنظام المعادلات الآتية حلا

$$
\begin{aligned}
& \text { • = } \varepsilon^{+} \\
& \text {•= }=\text { س } \\
& 1=\varepsilon+\infty-س-
\end{aligned}
$$

(^) أثبـت أن المبـادلة بين مغفي محددة من الارجة الثانية أو بين عموديها يغير إشارتها فقط أي أن :
$\left|\begin{array}{ll}P & ب \\ \sim & د\end{array}\right|-=\left|\begin{array}{cc}ب & P \\ د & ح\end{array}\right|:\left|\begin{array}{cc}د & \sim \\ ب & P\end{array}\right|-=\left|\begin{array}{cc}ب & P \\ د & ح\end{array}\right|$
(9) أثبت أن المبادلة بين أي صفين في محددة من الدرجة الثالثة يغير إشـارتها فقط . أي أن :

وكذلك المبادلة بين الصفين الاول والثالث والمبادلة بين الصفين الثاني والثالث .
(.1) أثبت أن المبادلة بين أي عمودين في محدَدة من الدرجة الثالثّة يغير إشارتها فقط

تـــمـاريـن عــــــامة
(1) حل المعادلة التالية وحـَـــق الناتج :

$$
\left(\left[\begin{array}{cc}
1 & r \\
r & \cdot
\end{array}\right]-\underline{m}\right) r=\left[\begin{array}{ll}
r & r \\
\varepsilon & 1
\end{array}\right]+\underline{m}
$$

(Y) أوجد النظير الجمعي ، ثم الضربي إن أمكن لكل مصفوفة فيما يأتي :
$\left[\begin{array}{cc}1- & r- \\ r- & \varepsilon-\end{array}\right](د) \cdot\left[\begin{array}{ll}\tau & r \\ \varepsilon & r\end{array}\right](\rightarrow) \cdot\left[\begin{array}{cc}r & \varepsilon \\ r & \eta\end{array}\right](ب) \cdot\left[\begin{array}{ll}r & 1 \\ 1 & \varepsilon\end{array}\right]$ (r) عبّر عما ياتّي بممفوفة واحدة :

$$
\left[\begin{array}{l}
m \\
ص
\end{array}\right]\left[\begin{array}{cc}
1- & r \\
r & r
\end{array}\right]\left[\begin{array}{ll}
ص & m
\end{array}\right]
$$

() برمن انن المصفوفة
(0) إذا علمت انن سِ
(ب) إستعمل النتيجة (P) لإيجاد س-1
(إرشاد : حلل الطرف الأيمن للمعادلة المعطاة)
(7)

(ب) حل المعادلات المذكوة في (P) بطريقتين مختفتين .
(V) حل أنظمـة المعادلات الآتية باستخدام المصفوفات :
(إذا كانت س

ملحـوظة : العلاقة أعلاه صحيحة بصودة عامة لجميع المصفوفات المربعة ن × ن ولكن نكتفي بأن
r= يبرهنها الطالب في الحالة ن
(9) حــل أنظمة المعادلات الآتية باستخدام المحددات :

$$
\begin{aligned}
& =J \frac{1}{\varepsilon}+\varepsilon \frac{1}{r}+m(P) \\
& \text { - = Jع - ع - } r \\
& 1=J+\varepsilon^{r}+س \\
& 1=\varepsilon \frac{0}{r}+ص \frac{r}{r}-\infty \frac{1}{r}(ب) \\
& \text {. }=\varepsilon-\infty+\infty \frac{r}{\varepsilon} \\
& \text {. }=\varepsilon \frac{r}{0}+س
\end{aligned}
$$

$$
\begin{aligned}
& 1=\varepsilon \ r+\infty!\varepsilon+\infty \\
& \text { • = عlo + }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \varepsilon=ص \varepsilon+\omega r \text {, } \quad \wedge=\omega r+m(P)
\end{aligned}
$$

البــاب الثالت

حســــاب المثلثات

$$
\begin{aligned}
& \text {. } 1 \text { - } \\
& \text {. مفاهيم أولية r-r } \\
& \text { r-r r r الدوال الدائرية }
\end{aligned}
$$

ت - r
الـ - r
. 7 - r الدوال المثثية للزاوية وتطبيقات حساب المثلثات
الدوال الدائرية لمجوع زاويتين أو الفرق بينهما
الـ الوال الدائرية لمضاعفات الزوايا
ق 9 -
r r
r - 1 - العلاقة بين قياسات زوايا المتكث وأطوال أضلاءه

البـابالثـالث-حسابالمثلـثات(Y)

 الله تعالى ني وضنعه بشك علم علمي منظم "
وإذا كان أسلافنا قد درثوا ما تومل إليه اليونان والهنود من أوليات مذا العلم ، فان اليونان

 وقد استنبط العرب المسلمن الظل (آي قياس الزاوية المفرضة بالضلع المابل لها ما مقسوماً على الضلع الجاد) كما استبطورا ظل التمام

 والجدير بالذكر أن الغربيين ، بعد أن نُتلت إليهم حضارتنا وعا

في علم حساب المثثات ، كانت منسوبة إلى ״ريجيو مونتـنوس، ، ثبت أنها من وضع العرب المسلمين ، قأنهم سبقوه إليها ، كها أيده بذلك مؤرخن غربيف آخسن مثل ، جوع سارتن ، وديفيد يوجين سمث " ، وغيرهم في " أن جـميع مؤلفات هذا العالم اعتمدت على كتب العرب

المسلمين ، وأنهُ نتل عنم الكثير من البحوث ، خاصة فيما يتعلق بعلم حساب المثثات ه . ويقل ״جمذيف هله ، في كتابه حضارة العرب : ٪ إن علم الجيب والظل يعتبر من علوم

 مامي عليه الآن " .
r - r مـفـاهيـم أوليـة
نقدم فيما يلي بعض المفاهيم الضرعدية لدراسة حساب المثّات ، وإن جلّ هذه المفاهيم معلوم
لاى الطالب فهي تقدم له على سبيل المراجعة .
(1) المسـتوي

سبق أن تعرفت على المستصي من خلال دراستك لكل من الهندسة والهندسة التحليلية ، وأقـمت فيــه مصـدين مدرجـين بحـيـث يــقابل كل نقطة فيه نوج مرتب من الأعداد الحقـقية (س ، ص) هما إحدائيا تل النقطة ، وقـد سمــينا المستوي بعد إضفاء هذه الصفة عليه : المستوي الإحـداثي (أو المستوي الديكارتي) كما في الشكل (

(1)

شـــــلr (1-r
(「) الـزأويـــة

وقد تعرفت أيضاً على مفهوم القطاع الزاوي والزاوية ، ولللك تذكر تساوي الزاويتين اللتِن

يمثّهما القطاعان الزاويان :

$$
\begin{aligned}
& {[\widehat{p, \neg p}],[\widehat{\sim}, \widehat{\sim} p]} \\
& \widehat{\text { أي أن }}
\end{aligned}
$$

أنظر الشكل (r-r)

لو اعتبرنا المستهي ــ
الشكل (الاتجاه نفسه ، إنه الاتجـاه المخالف لدوان عقارب الساءة

(r)

(1)
هــــل (r-r

وفي الشكل ((

 مستوياً إحداثياً ، واعتبرنا عليه الاتجاهين آنفي الذكر ، لدعوناه مسـتويـاً موجــهأ الانـا

هـــــــلـ (

 إحداثية متعامدة • سـنعتمد في دراستـنـا هذه على حــالة مســـو إحداثير موجه منسوب إلى نظام إحداثي متعامد

وبناء: على ما رأينا في توجيه المستّي ، فابن الزاوية الموجهة
تكسن موجبة إذا كان الضلع الابتدائي يدو بالاتجاه الموجب لينطبق على الضلع النهاني ، وتكن سالبة إذا كان الدوان المذكر بالاتجاه السالب . فإذا كان العدد الحقيقي هـ يعبر عن قياس الزاوية الموجهة ([P ب ، [[فإنتا نعبر عن ذلك بقولنا
 ق (نلخص ذلك بقولنا : (أو :

تعريــل (

،

وضـلعها الابتـداني على الجزء الموجب لمـــد السينات .

في الشكل (ولان ضلعها الابتداني [م حـ منطبق على الجزء الموجب لمحد السينات وهي زاوية موجبة لان ضلعها الابتداني يدود بالاتجاه الموجب لينطبق على الضلع النهائي [م هـ بينما الزاوية > حـP بـ وضع قياسي (رأسها لا ينطبق على نقطة الأصل) وهي أيضاً زاوية موجبة (لماذا ؟)

 في الشكل (
: آ آ

$$
\begin{aligned}
& =\stackrel{\text { ب }}{ }>
\end{aligned}
$$

ملحـوظة (r -
إذا كانت الزاوية الموجهة في وضب قياسي ، فإننا ننسبها إلى الربع الذي يقع فيه ضلعها النهائي . فلو وقع ضلعها النهائي في الربع الأل ، مثّلأ ، قلنا إن الزاويــة تقـع في الربع الأهل كالزاوية >P م ب
 تدريب (r-r (
عين في أي ربع تقع كل من النزايا الأتية :
(

إذا رسمنا في مستوٍ موجه منسوب إلى نظام إحداثي متعامد ، دانرةً مركزها نتطة الامعل ،

واضّ أن محيط دائرة الوحدة = = وحدة طهل (لماذا ؟) فإذا كانت وحدة الطهل هي السنتمتر ، فإن محيط دائرة الوحدة يساوي (ط) سـ ، حيث ط (آو () عدد حقيقي غير نسبي
وقيمته التقريبية عارr أو
(لاحظ أن القيم التقريبية للعدد ط هي أعداد نسبية وأن القيمة الأخيرة هي أقرب هذه القيم إلى ط)

$$
\text { تدريب (} r-r \text { r }
$$

إذا كانت ن, (س ، ص) Э (د) دائرة الوحـدة

$$
\text { شكل (- } 11 \text {) فنوجد إحداثي كل! من النقاط }
$$

نر (نظيرة ن, بالنسبة للمحد الصـادي)
نم (نظيرة نَ بالنسبة للمحد السيني)
نغ (نظيرة ن, بالنسبة للمحو السيني)

تحـقق أن : نץ ، نץ ، نع تنتمي إلى دائرة الوحدةً (د) ، وأن نَ نظـيرة نا بالنسبة لنقطة
الأصل م ، أوجد نظيره نץ بالنسبة لـِم

(1) قياس الزاوية الموجهـة :

لو جعلنا خط الأعداد الحقيَية ممـاساً لايأرة الوحدة في النتطة P (I،.) التي هي بالوقت ذاته نقطة الاصصل لخط الأعداد كما في الشــكل (الموجبة ممثلة بالنقاط الواقعة فيق محر السينات ، والسالبة مسثة بالنقاط الواقعة تحته ، ولو اعتبرنا خط الاعداد ماديأ مرناً، بحـيث يمكن لــفه على الدائرة ، فإن كل نقطة من خـط الأعداد
 مثلاُ من خط الاعداد تنطبق على النقطة ن من الدائرة ويكن : طول القوس [(br) $-\frac{1}{\varepsilon}-=$ فان : طول [

وإذا كان طول [ن. نا, وعلى هذا فإن كل نقطة من خط الأعداد تقابلها نقطة على الدائرة ، بينما نجد أن كل نقطة من الدائرة يقابلها عدد لا نهائي من نقاط خط الاعداد ، بحيث تكس المسافة بين نقطتين متاليتين منها
مساوية rط (وحدة طول) . أو بتعبير, آخـر

كل نقطة من الدانرة يقابلها على خط الاعداد الحقيقية مجموعة من الأعداد ، بحيث بكون الفرق بين كل عددين متتاليين مساوياً rط فعند لف الجزء الموجب من خط الأعداد ، إذا كانت ن. الممثة للعدد الحقيقي هـ أنل نقطة تنطبق على ن ، فابن النقاط المنطبةة على ن هي

وعند لف الجزء السالب من خط الأعداد نجد أن النقاط المنطبقة على ن هي :

\{•\}Uوبالتالي فإن النقطة ن ستنطبق عليها النقاط الممثلة لعناصر المجموعة
.....

نجد أن كل عدد حقيقي ستكمن له صصدة على دائرة الوحدةَ ، ونعبر عن ذلك بقولنا :
توجد دالة (يسميها البعض دالة اللف) مجالها مجموعة الأعداد الحقيقية ح ومجالها المقابل مجموعة نقـاط دائرة الوحـدة

ففي الشكل ($)$
 والنقطة ب (1) هي صورة لكلٍمن عناصر المجموعة :
$\left\{\sim \Delta \ni: \frac{b}{r} r+\frac{b}{r}\right\}=\left\{\ldots, \frac{b}{r} q, \frac{b}{r} 0,-\frac{b}{r}, \frac{b}{r}=, \frac{b}{r}=, \ldots\right\}$
والنقطة ح (- (. .) هي صورة لكل من عناصر المجموعة :
$\{\sim\rangle p: b p r+b\}$
رالنقطة د (.، -1) هي صودة لكل من عنامر المموعة :
(

$$
\left\{v \ni p: b_{p} r+\frac{b r}{r}\right\}
$$

(
i أو

إذا كانت >P م ن

وحينّذ نقل :
ت (
وتقرأ : قياس ($>$ P م ن) = = 1 زاوية نصف قطرية (أو : راديان)
والزاوية نصف القطرية (أو الراديان) ، كما تعلم ، هي قياس زاوية مركزية تتابل قوساا من دانرة ، طوله مساو نصف قطر كل الدائرة .

*

- لعلك لاحظت أنه عندما ن الرئيسي للزاوية >P م نكّ هو الصفر

 (iv-r)

حـــالات خـــاصـ
حـانل إيجـاد القـياس الرئــسي للـزاوية الموجـهـه

من دائزة الوحدة ، على التوالي ، ثم أوجـد القياس
العـام لكل من هذه النزايا

- وتجد أخيراً أن :
ن
فيكن القياس الرئيسي للزاوية >P م
(لاحظ أنه يمكن اعتبار قياس الزاوية >p م د كساوياً :

(ri-r)

$$
\begin{aligned}
& \text { والتياس العام هو :((}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ((} 19 \text { - } \\
& \text { شــكل(19-r) } \\
& \text { : }
\end{aligned}
$$

أوجد طل القوس المقابل لزاوية مركزية قياسها الرنيسي (1) إذا كان القوس من دائرة الوحدة

$$
\text { (Y) إذا كان القوس من دائرة نمف تطرها } 1 \text { (Y سم (}
$$

: الحل
() إذا كان القوس من دائرة الوحدة فإن طوله =

- $-\frac{T}{V}=\frac{Y Y}{V} \times \frac{r}{11}-\approx$
(Y) إذا كان القوس من دائرة نمف تطرها = £ سم ، فإنه (كها رأينا في الصف الاول)
طـل القوس هو ل = |

حـيث |هـ | تـــياس الزاوية المركزية المــابلة لذلك القوس متـدراً بالراديـان .

$$
\begin{aligned}
& 1 \varepsilon \times-\frac{K r}{V} \times \frac{r}{11}-\approx 1 \varepsilon \times \frac{b}{11} \frac{r}{-}=\int \text { فيكن طول القوس } \\
& \text { - } 1 \text { سم = }
\end{aligned}
$$

مثـال (r-r)

أوجد طل القوس من دائرة نصف تطرها هر ـ ا سم ، إذا علمت أن التياس الرئيسي للزامية
المركزية المقابلة له هـ =- -

الحل

$$
\text { 血 } 10=1.00 \times \frac{Y Y}{V} \times \frac{0}{11} \approx 1.00 \times\left|\frac{6}{11} \frac{0}{-}\right|=J
$$

مثـال (r-r)
أوجد ما يساويه الراديان (الزاوية نصف التطرية) بالدرجـات وماتسـاوي الدرجة بالراديـان

$$
\left(-\frac{r}{1 i r} \approx b\right)
$$

: الــلـ
تعلم أن العلاقة بين قياسي زاوية ، قياسها بالتقدير الستيني (سْ) وقياسها بالتقدير الدائري

○ov iv $\varepsilon_{0} \approx\left(\frac{{ }^{\circ} \backslash \wedge .}{b}\right)=$ فعندما تكن هـ

oov iv ivo 0 فالراديان (الزاوية نصف القطرية)
ر. رادیان. IV\&o \approx
والدرجة
تدريب (-

1 - تحقق من صحة القياسات الموضحة بالجدرل الآتي

احـسب طــل القـوس المـقّابلة لــزاوية مركـزيـة قـياســها .

$$
\frac{Y O 0}{1} \frac{0}{r} \approx b \text { تـطرها } \quad \text {. } \quad \text { ست }
$$

الحـل

ل = =هـ

$$
\text { سـ } 1 r \varepsilon r_{0} \approx r r, 9 \times \frac{r 00}{11 r} \times \frac{V}{q} \approx r r, 9 \times \frac{6 V}{q}=J
$$

مثـال (

أوجـد بالتقديرين الدائري والستيني قياس الزاويـة المركزيـة الموجــبة التي تـقابل قوسـأ طوله • اسم في دائرة طل نصف قطرها هاسم ثم أوجد تعبيرأ عامأ لقياسات مجموعة النزايا المشتركة مع هذه الزاوية في كلِ من الضلع الابتدائي والضلع النهاني وذلك بالتقديرين

$$
\frac{Y Y}{V} \approx \text { الدانري والستيني • }
$$

الحـل :
ل== •اسم ، نت = ا سم ، ل =| |ه| نت

$$
\Delta=|\Delta| \Leftarrow \cdot<\rightarrow \quad|0 \times|\rightarrow|=1 \cdot<
$$

$$
\text { راديان } \quad-\frac{r}{r}=\frac{10}{10}=\Delta
$$

$$
\frac{1 \Lambda \cdot}{b}-\times-\frac{r}{r}=
$$

$$
\text { r^ i. ioo } \approx \frac{V}{r r} \times I r=
$$

القياس العام المطلوب :
بالتقدير الستيني :

$$
\begin{aligned}
& \text { 'rI. = } \quad-\frac{1}{b}-=\frac{\dot{N}_{2}}{1 \Lambda .} \\
& \text {, } \frac{b V}{7}=-A \Leftrightarrow==-\frac{A}{b}=\frac{\dot{r} \mid}{\mid \Lambda .} .
\end{aligned}
$$

تـــمارين (
(1) الزاويـة الموجـهة >P م ب كان | هـ أصغر قياس لهذه الزاوية ، وكانت

فاكمل مايلي

$$
(\cdot>\rho ;<) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\cdots>\Delta>\cdots(د) \\
\cdots \ggg \cdots: j
\end{array}\right.
$$

$(\cdots, \cdots)=ب \Longleftrightarrow(b r=\Delta,=\Delta)(A)$
$(\cdots, \cdots)=ب \Longleftrightarrow\left(-\frac{b r}{r}=\Delta, \cdots=\rightarrow\right)(\rho)$
$(\cdots, \cdots)=ب \Longleftrightarrow\left(-\frac{b r}{r}=\Delta, j-\frac{b}{r}-\infty\right)(j)$
$(\cdots, \cdots)=ب \Longleftrightarrow(\cdots=\Delta, \quad$ i $b=\Delta)(\tau)$
(Y) أكمل الجدول الآتي :

$$
\begin{aligned}
& (\cdots ; \cdots) \quad b>\rightarrow>-\frac{b}{r}-(ب) \\
& (\cdots, j \ldots) \Longleftrightarrow\left\{\begin{aligned}
-\frac{b r}{r} \ggg b(\rightarrow) \\
-\frac{b}{r}-\gg b-j i
\end{aligned}\right.
\end{aligned}
$$

(إذا كانت الزاوية >
عندما يكن القياس الرئيسي لهذه الزاوية معطى وفق ما يأتي :

$$
\begin{aligned}
& \dot{V r}=\left(\overleftarrow{\Psi^{\prime} p}>\right) \quad \text { ق }(P) \\
& \text { (د () ق } \\
& \text { i. }-=\left(\overleftarrow{)^{(\rightarrow P}\right\rangle\right)}\right.
\end{aligned}
$$

((أوجد طمل القوس المقابلة للزاوية التي قياسها هـ من دائرة طهل نصف قطرها . اسم ، في
الحالات التالية

$$
\begin{aligned}
& i r_{0}=\rightarrow(ب) \\
& \dot{\varepsilon}_{0} \dot{r}=\rightarrow(د) \\
& \text {, } \frac{b}{7}=\rightarrow(P) \\
& \text {, } \frac{b r}{r}=\rightarrow(\rightarrow)
\end{aligned}
$$

 فنوجد بالتقدير الدانري أصغر قياس للزاوية >P م r r r r الدوال الدائرية :

هـــــلـ(r-r

في الشكل (تياسـي ، قياســها ع راديـان (حـث ع
 (تعريف) $\quad(r-r \ggg>+\Delta=\varepsilon$

تعـريـف (r -
إذا كانث الزاوية الموجهة >

بقياس الزاوية >P م م

 العددان : حتاع ، حاع يسميا ن : العددين المثّيّين للزاوية >

وحيث إن العددين حتاع ، حاع يتغيران تبعأ لتغير الزاوية >P م
 ومن ذلل نستطيع كتابة التعريف الآتي

تعـريـف (
الدالة حتا : ع عــــــ
والدالة حا : ع

نتانئ (
(P) (P)

$$
\begin{aligned}
& \text { فابن : حتاع=س ، حاع = ص }
\end{aligned}
$$

(ب) من النتيجة السابقة ينتج مباشرة أن :

وتكتب بالشـكل

$$
(\varepsilon-r) \quad 1=\varepsilon^{r} L+\varepsilon^{r}
$$

(حـ) بالرجـوع إلى الشكل (

$$
\begin{array}{ll}
\cdot=\cdot L & 1=\cdot L \\
\cdot=b r L & 1=b r \text { حتا حتا } \\
1=\frac{b}{r}-L & \cdot=\frac{b}{r} \\
=b L & 1-=b \text { حت }
\end{array}
$$

$$
1-=\frac{b}{r} r=\left(\frac{b}{r}-\right) \text { ح }
$$

(د () حيث إن \} ع
الابتدائي [م P وضلعها النهائي [م ن ، وبالرجوع إلى الشكل (

$$
\begin{aligned}
& (r-r) \quad \begin{array}{l}
1 \geqslant \varepsilon \geq 1- \\
1 \geqslant \varepsilon \geqslant 1-
\end{array} \\
& \left.1={ }^{r} \text { (حا }\right)+{ }^{r}(\text { حا }
\end{aligned}
$$

مثـال (

إذا كانت إحدى قيم ع معطاة كما يلي :

1 = تحمل على أمغر قـياس موجب عندما نضـع م
: فيكن ' ${ }^{\circ} \mathrm{rr}={ }^{\circ} \mathrm{r} 7 .+{ }^{\circ} \varepsilon .-=\varepsilon \Leftarrow$
rr.
تنريب (r -
(1) الزاودة الموجهة >

إذا علمت أن ق ($ا$ ($ا$ (لم
للزاوية

$$
\text { vo } \ni r \cdot \quad \text { irq. } \dot{r} \varepsilon=\varepsilon(P)
$$

v \ni r ' irา. + o.- = ع (ب)

$$
\begin{aligned}
& \text { * } v \cdot \text { • حتاع }
\end{aligned}
$$

$$
\begin{aligned}
& b r+\frac{b}{r}=b \frac{0}{r}=\varepsilon \text { (ب) } \\
& \text {. }=\frac{b}{r}-\quad \text { حتا }=\text { ح } \\
& 1=-\frac{b}{r}-L=\left(b r+\frac{b}{r}\right) L=ص
\end{aligned}
$$

$$
\begin{aligned}
& b \frac{0}{r}=\varepsilon(ب) \quad{ }^{\circ} \varepsilon r .=\varepsilon(P)
\end{aligned}
$$

$$
\begin{aligned}
& \text { : الهـل }
\end{aligned}
$$

$$
\begin{equation*}
\text { أعد السوال السابق حيث ع } \ni \text { ع } \tag{}
\end{equation*}
$$

(() أعد حل التمرينين (Y) ، (Y) في حالة حاع = .
(「) دالـة الظـل :

$$
\frac{\text { لنتعرف على العدد الحقيقي }}{\text { الـِ }}
$$

من الواضن أن وجود هذا العدد يقتضي كن س = .
لو قمت بحل التمرين (r) من التدريب (

$\Leftarrow \quad \neq \varepsilon^{\text {ح }}$
ومن الواضـح أن الشرط (Y) يكتب
(r)

$$
b(r+1)+\frac{b}{r} \neq \varepsilon \quad \text { i } \quad b \quad r+b+\frac{b}{r} \neq \varepsilon
$$

$$
v \gg \quad, \quad b_{r}+-\frac{b}{r} \neq \varepsilon
$$

$$
\text { ظلاع= صس ، حيث ن =(س ، ص) ، سr + ص ص = } 1 \text { انظر الشكل (}
$$

$$
\begin{align*}
& b(م r)+\frac{b}{r} \neq \varepsilon \tag{1}\\
& \text { والشرط (1) يكتب } \\
& \text { فالشرط (Y) يعني أن : عدد فردي من ط } \\
& \text { والشرط (1) يعني أن : عد } \\
& \text { وعلى هذا يمكن جمع الشرطين بشرط واحد هو }
\end{align*}
$$

$$
\begin{aligned}
& \infty \ni r \cdot p r+\frac{b}{r}-=\varepsilon(-) \\
& \infty \ni r \cdot p r+\frac{b 0}{v}=\varepsilon(a)
\end{aligned}
$$

وبالطريقة نفسها التي سلكناها في حتاع ، حاع نتلل :
تعريـن (V-r)
نعرف الدالة الدانرية ظاع كما يلي :

$$
\begin{aligned}
& \tau \longleftarrow\left\{\sim \nu \rho p: b_{p}+-\frac{b}{r}=\varepsilon\right\}-\tau: \text { b }
\end{aligned}
$$

$$
\text { نتائ؟ ((r })
$$

(P) من النتجة (
. $=\frac{\cdot}{1}=\frac{. \quad \text { ج }}{\cdot \mathrm{L}}=$. حا
ظا
ونستطيع أن نلاحظ بسهولة أن كلا من
ظا

$$
\begin{aligned}
& \text { (ب) من النتيجة (} \\
& \text { فان : فا }
\end{aligned}
$$

عبر عن ظا ع بدلالة أصغر قياس موجب للزاوية الحـالتين التاليتِن

$$
\frac{b v}{r}=\varepsilon(ب)
$$

$$
r v .=\varepsilon(p)
$$

$$
\frac{b}{r}-b=\left(b r+\frac{b}{r}\right) b=\varepsilon \quad b \quad b r+\frac{b}{r}-\frac{b v}{r}=\varepsilon \quad \text { (ب) }
$$

(「) دوال دائرية أخرى (
ملـــوظة (r - £)

$$
\begin{align*}
& \text { حا } \tag{1}\\
& \text { و وعندما } \\
& \text { ! إن (() يمثل مجموعة الأعداد الزوجية من ط } \\
& \text { ! إن (Y) يمثل مجموعة الاعداد الفرديـة من ط }
\end{align*}
$$

$$
\begin{aligned}
& \text { تعـريـف (A-r } \\
& \text { نعرف فيـمـا يلي الوال التالية } \\
& \text { (1) القاطع ونرمز له بالرمز قاع ويكن } \\
& \sim \ni \rho \cdot b_{p}+\frac{b}{r} \neq \varepsilon \cdot \frac{1}{\varepsilon} \\
& \text { (Y) قاطع التمام ، ونرمز له بالرمز قتا ع ويكن } \\
& \text { ص } \ni \text { r } \quad b_{p} \neq \varepsilon \cdot \frac{1}{\varepsilon}=\text { قتا } \\
& \text { (r) ظل التمام ونرمز له بالرمز ظتاع ويكن : } \\
& (v-r) \\
& -\frac{1}{\varepsilon}
\end{aligned}
$$

وعليه فان (() ، (Y) معاً نعبر عنهما بقولنا ع = م ط حيث م
v \ddagger لذ وهذا ما اشترطناه في الفقرتين (Y) ، (r) من التعريف السابق .

نتيـجـة (
نستنتج بسهولة أن :

$$
\begin{aligned}
& \text { قا (ه } \\
& \text { قتا (ه } \\
& \text { ظتا (ه }
\end{aligned}
$$

() () قـاعـدة الإشـارات
رأينا أنه : لاي نتطة ن (س ، ص) واقعة على دائرة الوحدة فان : حتاع = س ، حاع = ص ،
 جيب التمام كما نسمي المحو مصح محمد الجيب وهذا يعني أن :

إشارة حتاع هي إشارة س نفـسـا
وإشارة حاع هي إشارة ص نفـسها

فإذا كانت الزاويـة التي قـيـاسـها عـا ع ع في الربع الأُل

وإذا كانت الزاوية التي قياسها ع في الربع الثاني فان

وهكذا

والشكل (Y - Y) يبين الوال التي إشاراتها موجبة في كلل من الأرباع الأربعة ، وما سواها
 ســالب ، وذلل بالنسبة لكل من حاع ، حتاع ، ظاع
 وإشارة قتاع مثل إشارة جاع وإشارة ظتاع مثل إشارة ظاع
إذا علمت أن الزاوية التي قياسها ع
(1) في الربع الثالث .
(Y) في الربع الرابع .

مثـال (
الزاوية الموجهة P (وعين على الشكل الزاويتين المقابلتين لهما ثم أوجد في كل حالة النسب المثثّية لهذه الزاوية
: الهـ

$$
\begin{aligned}
& \text { (د) } \ni\left(-\frac{r}{0}-r m\right) \dot{u} \\
& 1=r ص+r m \Longleftarrow \\
& 1=\frac{9}{r_{0}}+r m \Longleftarrow \\
& -\frac{\mathfrak{\xi}}{0}- \pm=m \Longleftarrow
\end{aligned}
$$

ع

انظر الشكل (ro r

$$
\begin{aligned}
& \text { فيـكن : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وبالتالي فان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (قا } \\
& \text { قاه } \\
& \text { (ه) (المتطابقـات الأسـاسـية } \\
& \text { سبق أن تعرفت في النتيجة (+ - } \\
& (\varepsilon-r) \quad \tau \ni \varepsilon \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! إن المتطابقتَين السابقتِين تدعيان : المتطابقتَين الأساسيتِين لحساب المثلثّات ، ونستنتج منهما } \\
& \text { متطابقتَين أخريين فيما يلي } \\
& \text { نظـريـة (} \\
& \text { لأي زاوية موجهة قياسها ع فابن }
\end{aligned}
$$

$$
\begin{aligned}
& (a-r) \text { ~ } \ni \stackrel{~}{(a)} \quad b_{p} \neq \varepsilon \\
& \varepsilon^{r}{ }^{r}=\frac{1}{\varepsilon^{r} L}=\varepsilon^{r} \text { 汇 }+1(r)
\end{aligned}
$$

(Y) برهان الفقرة الثانية متروك للطالب
تدريـب (V (V)
(1) بسَط مايلي

$$
\begin{equation*}
\frac{1}{\varepsilon \Delta-1}+\frac{1-\frac{1}{\varepsilon^{r}-1}}{\varepsilon \square+1} \tag{}
\end{equation*}
$$

$$
-\frac{\varepsilon}{\varepsilon \frac{L}{b}}
$$

(ح) حتاع + حاع .ظاع

$$
\frac{\varepsilon^{r} b^{r}}{\varepsilon^{r} b+1}=\varepsilon^{r} \text { أثبت أن }
$$

(r) برهن على صحة الفقرة (() من النظرية (مثـال (

إذا كانت .
((Y) أوجد في كل حالة : حاهـ ، حتاهـ

لللزاوية > P م ن

: الحـل

الأول هـ, والقياس الثاني هـ ، انظر الشكل (

$$
\text { (فعندما تكون الزاوية بالربع الأول : }-\frac{1}{Y V} \pm=\text { هـ }
$$

$$
\text { فان حتاه, }=\frac{1}{r} \bar{V}=, \frac{1}{r V} \times \text {, }=,
$$

وعندما تكن الزاوية بالربع الثالث : هـ =

$$
\text { شكل (}) \text { (}
$$

٪ م ن , نتاظرتان بالنسبة لنقطة الأصل م
(

$$
b=, \perp-{ }_{r} \perp \stackrel{ }{c}
$$

مـلحـوظة (r -

,
p ، ن تنتميان إلى دائرة الوحدة .
(د) ، المماس في P يلاقي الضلع النهاني للزاوية في ك . لعلك تستنتج من تشابه المثيثِن م ب ن ، P م ك .

$$
\begin{aligned}
& \text { (لمازا ؟ } \\
& \frac{-1}{r V}-={ }_{r} \rightarrow \text { فان حتاهr } \\
& \left(-\frac{1}{r V} \cdot \frac{-1}{r V}-\right)={ }_{r} \dot{j} \cdot\left(\frac{-1}{r V} \cdot \frac{-1}{r V}\right)=, j(r)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{r}-=-\Delta^{r} \quad<\quad-\frac{1}{\Delta^{r} L_{\sim}}=r^{r}(1)+1<
\end{aligned}
$$

:
|

$$
\begin{aligned}
& \text { أو : }
\end{aligned}
$$

أي أن ظاع تتعين قيمتها بالعدد الذي يقيس إحداثي النقطة ن على المحد المنطبق على مماس دائرة الوحدة في P P والموجه كاتجاه محو الصادات ، حيث ث نقطة تقاطع الضلع النهاني للزاوية >P
تدريب (+ -

أعد رسم الشكل (يساوي كلأ من ظا هـ, ، ظا هــ ، ، ماذا تلاحظ ؟ مثـال (
 كلأ من : حتا هـ ، حا هـ ، ظا هـ
: الهـل

$$
\begin{aligned}
& \text { - } \\
& \frac{r_{0}}{179}-1=\Delta^{r}-1=\Delta^{r} \text { حتا } \\
& \text { (}-\frac{1 r}{1 r} \pm=+\rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1 r}{\text { Ir }}=\rightarrow
\end{aligned}
$$

تــــمـاريـن (r-r
(1) إذا كانت r حاهـ = ع حتاهـ , $\frac{b r}{r} \ggg \gg$ ه $ا$ أعد حل المسالة السابقة إذا علمت أن
(r) ()
(لاحظ وجود حلَــن)
(0) إذا كانت | ظاهـه ظا هـ , حا ه , حتا هـ , قتا هـ , قا هـ , ظتا هـ
(7) إذا كانت هـ أقل قياس لزاوية موجهة في عكس اتجاه دودان عقارب الساعة ، فعين إشـارة كل,

$$
\text { هr } \quad \text { ه }
$$

فنوجد قيمة كل من حتا هـ ، ظتا هـ
(()
النـهائي لزاوــــة موجـهة ، في وضـع قيـاسـي وكان قــياسها هـ . فنوجـد قيمة كلر من
حتا هـ , حا هـ , ها ه

توجد قيمتان لقياس هـ ، ثم أوجد فيكل مرة : حا هـ ، قا هـ ، ظتا هـ .

في التمارين من (II) إلى (17) إذاعرفت أحد قيم الدوال المثّية : حا هـ ، حتا هـ ، ظا هـ
ظتا هـ للزاوية التي قياسـها هـ فنّرجد بقية القيم ، فيما يلي .

بسط مايلي :

برهن على صحة مايلي :

$$
\begin{aligned}
& \text { r= =) بره } \\
& \left.1={ }^{r} \text { (حتا ب حتا حـ }\right)+{ }^{r} \text { (r) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} 1,1-\}=\text { = وعرفنا عليها العملية * كما يأتي : } \\
& \text { س * ص=س }
\end{aligned}
$$

فاثبت أن * عملية ثنائة على سح
r -

$$
\begin{aligned}
& \text { بالرجوع إلى النتيجة ((د- }
\end{aligned}
$$

سنبحث في هذه الفقرة عن قواعد أخرى لتبسيط قيم الدوال المثثية :

$$
\text { نظريــــ (})
$$

لاي زاوية موجهة قياسها ع فابن :
(حتا (ط ع ع) ، حا (ط- ع)) = = - حتاع ، حاع)
في الشكل (Y - Y) الدائرة (د) هي دائرة

شـــلـ(rA-r)

الوحدة ن (حتاع ، حاع) = ن (س ، ص)

نَ (- س ص)
(1) ($($ (لماذا؟ ؟ =
, راضح أن ق (
(Y) (

من (() ، (Y) ينتج أن :
(حتا (ط - ع) ، حا (ط - ع)) = (- حتاع ، حاع)

أي أن :
حتا (ط- ع) = - حتاع
حا (ط
$(11-r)$
وبفرض
ظا (

لاي زاوية موجهة قياسها ع فابن :
(حتا (ط + ع) ، حا (ط + ع)) = (- حتاع ، - حاع)

تدريـب (9-r

أن طا (ع + ط) = ظاع

لاني زاوية موجهة قياسها ع فابن :
(حتا (- ع) ، حا (- ع)) = (حتاع ، - حاع)

البرهــان
[ن ن] ـــ المحو .س لوجدت أن

ن (حتاع ، حاع) = ن (س ، ص)
وأن نَ(س ، - ص)
وبالتالي فابن : نَ (حتاع ، - حاع)
شــــلـ (r.
وحيث إن ق (P> م نڭگ) = -ع (لماذا؟)
(Y) فابن : نَ (حتا (-
من ((Y) ، (Y) ينتج المطلوب ومنه نجد :

تدريـب (

أعد رسم الشكل (ץ -.
ظا (-ع) = - ظاع ع
نظـرية (r - 0)

شــــلr (r)

لو استعنت بالشكل (
دائرة الوحدة لوجدت أن
ن (حتاع ، حاع) = ن (س ، صر)
(1) $($ (ε ن ومن تطابق المثثين م بن ن ، م بَ
 من (1) ، (Y) ينتج المطلوب . ومنه نجد
نظــريـــ (

لأي زاوية موجهة قياسها ع فان

$$
\text { (حتا })=\left(\text {) }\left(\varepsilon+\frac{b}{r}\right) \text { (}\right) \text { ، }
$$

البرهـــان
مترون للطالب مستعيناً بالشكل (r - r

$$
\begin{aligned}
& \text { حتا } \\
& \text { حا } \\
& \text { ويفرض ع } \\
& \text { ظا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { لالي زاوية موجهة قياسها ع فابن } \\
& \text { (حتا })=(\text { (})=\left(\varepsilon-\frac{b}{r}\right) \text {) }
\end{aligned}
$$

($10-r$) ، 1 (1 (
(r) برهن على صحة النظرية (
مثال (

بسنط قِيم الدوال الدائرية التالية

$$
\begin{aligned}
& \left(\varepsilon+\frac{b r}{r}\right) \text { b } \quad\left(\varepsilon+\frac{b r}{r}\right) \text { ح } \cdot\left(\varepsilon+\frac{b r}{r}\right) \text { (i) }
\end{aligned}
$$

$$
\begin{aligned}
& \left((\varepsilon+b)+\frac{b}{r}\right) \text { ح }=\left(\varepsilon+\frac{b r}{r}\right) \text { (P) }
\end{aligned}
$$

(lo-r) القاعدة -
(القاعدة (C - $)$ - =

$$
\varepsilon レ=
$$

وبطريقة مشابهة نجد أن حا
وبالتالي فان ظا

$$
\begin{aligned}
& \left.\left((\varepsilon-b)+\frac{b}{r}\right) \text { (}\right)=\left(\varepsilon-\frac{b r}{r}\right) \text { (ب) } \\
& \text { (}(\text {) }(\varepsilon-b) \text { - } \\
& \text { - = } \\
& \text { ط }
\end{aligned}
$$

$$
\text { ملـــوظـة (r - } 1
$$

ندريب (r-r (r)
(1) حالل أن تتذكر القيم الخاصة للدوال المثثية التي تعلمتها في مقرر الصف الاول الثانصي ، ثم أضف إليها ماتعلمته في البند (r - r) ثم أكمل الجدول التالي

(Y) أكتب قيمة كل من قا هـ ، قتا هـ ، ظتا هـ , إذا كانت :

$$
\begin{array}{lll}
\frac{b}{r} & =\rightarrow(\rightarrow) & \frac{b}{\varepsilon}
\end{array}=\rightarrow\left(() \quad \frac{b}{7}=\Delta(P)\right.
$$

(r) أثبت صحة مايلي :

$$
\begin{aligned}
& -\frac{0}{r}={ }^{\circ} r \text {. قتا } \\
& r=\frac{b}{q}-\frac{b}{r}-\varepsilon+\frac{b}{\varepsilon} \operatorname{L} \\
& \text { مثال (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { احسب : حاع ، حتاع ، ظلاع ، إذا كان : (P) } \\
& \text { : الحـل }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{r}}{\mathrm{r}} \mathrm{r}^{-}=
\end{aligned}
$$

$$
\begin{aligned}
& \overline{-r}{ }^{Y}-\varepsilon_{0}-=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ب) حا () } \\
& -\frac{1}{r}={ }^{\circ} r . \quad L=
\end{aligned}
$$

$$
\begin{aligned}
& \text { وبطريقة مشابهة أو بتطبييق المتطابقة ظا هـ } \\
& \overline{-r}=\frac{1}{r}=\left({ }^{\circ} r \text { r. - }\right)
\end{aligned}
$$

(rr-r)

شــــــل (r
(لاحــطـ أن الزاوـــتين الموجـهـين اللتين تـياسـامها

- .

النهاني نفسه [م ن كما في الشكل (
مثـال (
إذا كانت 1 +r حتاهـ = . .
: الحـل
$\frac{1}{r}-=\rightarrow$ حت $\Longleftarrow=-1$
〒. $\rightleftharpoons=-$
ومنه : حتا هـ = حتا (íg :

تدريـب (
(1) أكمل الجدِل التاللي :

$$
\begin{aligned}
& \overline{Y V}=- \text { (ب) } \quad \frac{1}{r}=-\infty \quad(P)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }=r+\text { + } r \text { - } \text { - } \text { حت }
\end{aligned}
$$

(

تعريــن (
تسمى الدالة د المعرفة على سح دِ ح دالة دوديـة دوهــا P أمغر عدد حقيتي موجب بحيث : د (س + P) = د (س) لكل س \ni

فـلو رجعـنا إلى القاعدة (- - 1) لوجدنا أن :
حتا (س + Yط) = حتاس

حا (س + Y
بينما الدالة ظا دودها ط لان :
القاعدة (r-r
ظا (س + ط) = ظا س
مثـال (
$\frac{b}{r} \geqslant m \geqslant \cdot$ ارسم المنحنى الذي يمثل الدالة ص = حاس حيث
: الهـل
الجدِل التالي يمثل نقطاً من منصنى مذه الدالة خلال الفترة [.

$\frac{b}{r}$	$\frac{b}{r}$	$\frac{b}{\varepsilon}$	$\frac{b}{7}$	\cdot	$س$
1	$\cdot, \wedge 7 \approx \overline{\frac{r}{r}}$,$V 1 \approx \overline{\frac{r}{r}}$	$\frac{1}{r}$.	$س L$

وقد مثنا هذه النقط في الشكل (- -

رلعلك تلاحظ أن قيمة حاس هي الإحداثي الصادي للنقطة ن على دائرة الوحدة ، وأن قيمتها تتزايد تدريجياً من (صفر) عندما س = صفراً (أي عندما تنطبق ن على P) إل أن تمبع قيمتها مساوية 1 عندما س 1 (i) $\frac{b}{r}$ عي عندما تنطبق ن على ح) وبهذه الطريقة تستطيع إكمال رسم المنحنى خلال الفترة • المناظرة لها على دائرة الوحدة

مثـال (17-r)
ارسم المنحنى الذي يمثل الدالة : ص = حاس ، س
: الحـل
لو اتبعت أسلوب المـــال (10 - 10) لحصلت على الشكل (

مثـال ((
ارسم منحني الدالة ص = حتا س ، س Э

الهـل
بالرجوع إلى دائرة الوحدة أو بالاعتماد على قيم س نتوصل إلى التميل البياني المطلوب كها في
الشكل ((rv - r)

هــــلـ(rv-r)
ملحـوظة (r - (v)

سبق أن علمنا أن حتا س = حا (س + في الاتجاه السالب مـسافة $=$ أل

تــــــــريـن (r r

احسب كلأ من حاع ، حتاع ، ظاع ، ظتاع في الحالات التالية :

$$
\begin{aligned}
& \left.{ }^{\circ} r \ldots-=\varepsilon(\eta) \quad \bullet \varepsilon r .=\varepsilon(0) \quad \bullet \vee\right\urcorner_{0}=\varepsilon(\varepsilon)
\end{aligned}
$$

أوجد قيم الدوال المثّثية الاخرى للزاوية التي قياسها هـ في كل من الحالات التالية :

$$
\begin{aligned}
& \cdot \mid \Lambda .>\Delta>\text { © } 9 .,-\frac{1}{r}-=\Delta \text { حتا (1.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. }>\rightarrow>\text { 'q. } \cdot \overrightarrow{r V}=\Delta \text { (Ir) }
\end{aligned}
$$

$$
-\frac{b}{r} \geqslant \infty \quad \text { ص }
$$

(l) ارسم المنحني البياني للدالة
$[b, b-] \ni$ ص
(lo) ارسم المنحني البياني للدالة :
[b, b-] \ni =
r - 1 الدوال المثلثيـة للزاوية وتطبيقـات حسـاب المثلثات :
(1) الدوال المثلثيـة للـزاوية :

رأيت في مقر الصف الاول الثانوي أن قيم الدوال المثّية لزاوية حادة في مثلث قانم الزاوية
قياسها هـ تحدد على النحو الآتي :

$$
\begin{aligned}
& \text { ظاهـ }=\frac{\text { المجَاقدِلِ }}{\text { المقا }} \\
& \text { انظر الشكل (rی-r } \\
& \text { مثال (}
\end{aligned}
$$

أرجد قيم الدوال المثثية لكلب من زاويتيه الحادتين .

$$
\begin{aligned}
&)^{r}(\mid \text { ا } \\
& \text { rot }={ }^{r}(T Y)-r^{r}\left(r_{0}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { وحيث إن : حـ = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { •رإن } \\
& 1, r K \approx \frac{17}{1 r}=P \text { تا } \\
& \text { وحيث إن : حـ = }
\end{aligned}
$$

حا حـ
قتاحـ

مـلحـوظة (
(1) لعلك تلاحظ أن الدوال المثـلـية هي الدوال الدانرية التي سـبت تعريفها مطبقة على قياسات نوايا مثت .

أي أن : قيمة أي دالة مثّثية لزاوية قياسها هـ تساوي قيمة الدالة الدائرية التي قياسها هـ
(Y) توخـياً للاختصـار كتبنا : حا P ، حتا P ,

بدلأْ من : حا
نتيـجـة (r
في المثث P ب حـ القانْم في ب إذا فرضنا |ب حـ|

$$
(17-r) P \text { (} 17 \text { = }=P=P=\frac{? P}{\%} \text { (1) }
$$

(أي أن : طهل الضلع القانم = طهل الوتر × جيب الزاوية
المقابلة لذلك الضلع القاتم) .
$(I V-r) P$ P $P=\frac{1 \sim}{1}=\frac{1}{1}(Y)$
(أي أن : طهل الضلع القائم = طهل الوتر × جيب تمام
(
الزاوية المجاودة لذلك الضلع القانم) انظر الشكل (r - ع ع)

تدريـب (r - \&

أوجد قيم الدوال المثشّية للزاوية P ، ثم استنتج من ذلك قيم الدوال المثيّة للزاوية جـ .

$$
\begin{aligned}
& \text { * المث* } \mathrm{C} \text { (Y) } \\
& \text { أوجد طهل كل من : [ب ب] [ب }
\end{aligned}
$$

(r) ب ب ب ، ح قياسات نغايا مثث أي أن : P + ب + حـ = ط

أثبت أن : حا
عاذا يساوي كل من حا
(؟) تُطبيقَات حسـاب المثلثـات :
توصلنا في مقر الصض الأل الدانيى إلى قيم الدوال المثيّة من أجل بعض القياسات الخاصة

كما رأينا أنه إذا لم تكن لللزاوية إحدى هذه القياسات الشهيرة وكنا بحاجة إلى إيجاد قيم
 جداول خامة تدعى الجداول المتّية ، وهي على أنواع : منها ماهو مقرب إلى ثلاثة أرقام عشرية ، ومنها ماهو مقرب إلى أربعة أرقام عشرية أو خمسة أرقام عشرية وقد تر أركنا

أربعة أرقام عشرية .

وكما رأيت في البند ((- ا) ، فقد كان لعلمائنا نحن المسلمين الآثر الكبير في التوصل
 الالة الحاسبة الالكترنية ، مما يجعلك تستطيع الاستغناء عن الجداول المثّثية ، إن كانت بين
يديك آلة حاسبة تحتوي على قَمِ الدوال المتُثية

 نستفيد من الجداول المتّثية
فلو طلب منا ، مثلاُ ، إيجاد (حا Yor) ، فابنتا نكتب :

$$
(\cdot v r+i \wedge .) \text { ح }
$$

$$
\begin{aligned}
& \text { vr L - = } \\
& ., 907 r-=
\end{aligned}
$$

Sin $253^{\circ}=-0,9563048$: ولى أردت الاستعانة بالالة الحاسبة فسوف تحمل مباشرة على
وبالتقريب إلى أربعة أرقام عشرية تجد : حا Yor = =
\qquad
سلم طوله ه أمتار يرتكز على جدار رأسي بحيث يميل على أرض أفقية بزاوية قياسها جَّ .0 أوجد بعد كلب من نقطتي ارتكاز السلم على الجدار والارض عن خط تلاقيهما .
: الحـ
في الشكل (

$$
\begin{aligned}
& \text { في أج }
\end{aligned}
$$

| حـ ب |

$$
\begin{aligned}
& \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { م, } 17 \approx \text {, АTHT7VA }=\text {.,VVYVYYT } \times 0 \approx \\
& \text { مثال (r.-r) }
\end{aligned}
$$

: الحل
في الشكل (
|ب حد| = خر0 م م (طل ظل النخلة على الارض) .

P| ب| | \mid | \mid |

$$
\begin{aligned}
& \text { م }|V,| . V T Y Y= \\
& p|\vee,| | \approx
\end{aligned}
$$

تـــمـارين ((-

وطهل الارتفاع [ب د] .
P(Y) ب حـ مثلث قائم الزاوية في ب فيه |P ب |= م سم ، |ب حـ| =

فتزجد : . 1 حتا س حتا . 7 - 7 ظتا س حا
((P) ()「roir حت حت
(ب) (ب) باحب حتا (
(ح) قارن بين النتيجتين في (P) ، (ب)

$$
\begin{aligned}
& \text { P (0) } \\
& \text { أوجد : (P) طول كلبمن [ب حـ] ، [} \\
& \text { (ب) قا }
\end{aligned}
$$

(7) مئذنة طهل ظلها على أرض أفقية . .

أوجد ارتفاع المئنة .
 على الأرض عن خط تلاقي الأرض والجدار مسافة اللتين يمنعهما السلم مـ الأرض والجدار ، ثم أرجد بعد نقطة استناده على الجدار عن خط
 تلاقي الجدار والارض . v الـ نظرية ($v-r$)
الكل زاويتين قياساهما حـ ، د فابن : حتا (ح + د) = حتا حـ حتا د - حا حـ حا د د البرهــان

في الشكل (r-r منها في وضّ قياسي حيث : ق (
ق ق (
(
الوتران [[

$$
\begin{aligned}
& \text { = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { حتا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} 1 \wedge-r) \quad \text { ح }) ~ \rightleftharpoons
\end{aligned}
$$

أوجد بدف استخدام الجدامل أو الآلة الحاسبة حتا ه 1.
: الحـل

$$
\begin{aligned}
& \text { حتا (}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{r}{r} \times-\frac{r}{r}-\frac{Y}{r} \times-\frac{1}{r}= \\
& (r-1)-\frac{r}{\varepsilon}=
\end{aligned}
$$

نظرية (
لكل زاويتين قياساهما حـ ، د فإن
حتا ($19-r$ (

إن القـانفن (r - ا^) متطـابقة محــقة لكـل زاوـــتين ، ولهذا نستطيع ان نضـع (- د)
مكان (د) فيمبـح :
حتا (
\Longleftarrow
مثـال (r r r) :

أوجد حتا ها • بدن استخدام الجداول أو الالة الحاسبة .
: الهـل

$$
\begin{aligned}
& \text { حتا (}
\end{aligned}
$$

$$
\begin{aligned}
& (\bar{r}+1) \frac{\Gamma}{\varepsilon}=\frac{\bar{r}}{r} \times \frac{\bar{r}}{r}+\frac{\bar{r}}{r} \times \frac{1}{r}=
\end{aligned}
$$

$$
\text { نظرية (} 9 \text {) }
$$

لكل زاويتين تياسامها حـ ، د فابن :
حا (حـ + د) = حا حـ حتا د + حتا حـ حا د

البرهــان
(
حا (حـ +د) = حتا
(لماذا؟)
= حتا ((
) حتا (ح

$$
\text { (r.-r) } \Longleftarrow
$$

نظرية (
لكل زاويتين قياساهما حـ
(r)-r) (
(البرهان متروك للطالب)
نتيـجـة (
من المتطابقتين (

وبقسمة كل من البسط والمقام على حتا حـ حتا د نجد

$$
\begin{aligned}
& (r r-r) \\
& \text { b }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثـال (} \\
& \text { أرجد قيمة المقدار . } \\
& \text { ظبا } \\
& \text { المتطابقة (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { •7. ظا = } \\
& F V=
\end{aligned}
$$

$$
\begin{aligned}
& \text { فأرجد قيمة كلبمن حا هـ + }+ \text { () ، حتا (هـ - } \\
& \text { : الحـل } \\
& \text { تعلم أن : حا (هـ + } \\
& \text { إذن كلأ من حا هـ ، حتا هـ ، حتا ى } \\
& (\wedge-r) \\
& \text { من المتطابقة: } \\
& -\frac{1}{ه^{r}}={ }^{r}\left(-\frac{0}{1 r}\right)+1 \quad: \quad \text { : } \\
& \text { حتا هـ = }
\end{aligned}
$$

$$
\begin{aligned}
& (\varepsilon-r)
\end{aligned}
$$

حتاى = - \quad (10 (لـــاذا اخـتـرنـا الصـل السـالب؟)

$$
\begin{aligned}
& \frac{Y I}{Y Y I}-=
\end{aligned}
$$

كذلك : حتا (هـ

$$
\begin{aligned}
& \left(\frac{\hat{1}}{\frac{1}{}}\right) \times\left(\frac{0}{1 r}-\right)+\left(\frac{10}{1 V}-\right) \times\left(\frac{1 r}{1 r}-\right)= \\
& -\frac{1 \varepsilon}{r_{Y}}-\frac{1}{1}= \\
& \text { (} \text { (المتطابقة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { حيث }
\end{aligned}
$$

$$
\begin{align*}
& \frac{Y I}{Y Y}-=\frac{\left(\frac{1}{10}-\right)+\frac{0}{1 r}}{\left(-\frac{1}{10}-\right)\left(\frac{10}{1 r}\right)-1}=(v+\infty) \frac{T^{-}}{T V} \\
& \text { تدريـب (r) - }
\end{align*}
$$

(1) أوجد قيمة كلب مماياتّي دن استخدام الجداول أو الالة الحاسبة .

$$
\begin{aligned}
& \frac{i \varepsilon b i r \varepsilon b+1}{i \varepsilon b-i r \varepsilon 6}
\end{aligned}
$$

(Y) مانوع المـــلث الذي تحقق قياسات نواياه العلاقـة :

$$
\begin{aligned}
& \text { حا } \\
& \text { (r) أثبت أن : حا (} \\
& \text { () أثبت أن : حتا (حـ + }
\end{aligned}
$$

تـــــاريـن (
(1) أوجد بدن استخدام الجداهل والآلة الحاسبة مايلي :

$$
\begin{align*}
& \begin{array}{l}
1 \cdot \frac{16}{1 \cdot 4 b}+0 \cdot 4 b-1
\end{array} \tag{j}\\
& \frac{1 \cdot L b}{1 \cdot L b \times r \cdot \frac{4}{4}+1}(0)
\end{align*}
$$

(r)
فنوجد قيمة كل من : حا (هـ +
(r) باستعمال متطابقات المجموع أثبت أن :

$$
\begin{aligned}
& \text { () }
\end{aligned}
$$

() بفرض حا س (
أوجد قيمة كل من
حا (س + ص) ، حا (س - ص) ، حتا (س - ص) ، حتا (س + ص) •
إذا كان ظاهـ

أوجد قيمة كل من :
ظا (ه+
(T) استخدم المتطابقات التي حصلت عليها في البند (V - $)$ (

$$
\begin{aligned}
& (v-\Delta) L+(v+\Delta) L(P) \\
& \text { (} v^{-\infty} \text { - } \\
& \text { (ح) حتا (ه + + } \\
& \text { () }
\end{aligned}
$$

وإذا كان حاب
(9) برهن على صحة النتية (
(^) برهن على صحة النظرية (
r -
سنبحث في هذا البند عن صيغ مثلثية لكلبِمن الدوال :
حا حاح ، حتا

بما أن : حتا

$$
\text { (rr-r) } 1-\text { حتا }^{r} \text { r } \quad \text { r }
$$

وأن :

$$
\begin{aligned}
& (r v-r) \\
& (r \wedge-r) \\
& (r q-r)
\end{aligned}
$$

حتا

$$
\xrightarrow[r]{r}=1
$$

$$
\begin{aligned}
& \text {) (} \sim_{\text {(}} \text { + } \\
& \text { من المتطابقة (r. -r) } \\
& \text { (rq-r) } \\
& \text { حا } \\
& \text { (} \\
& \text { من المتطابةَ (} \\
& \text { (ro-r) } \\
& \text { = } \\
& \text { حتاr } \\
& \text { نتيجـة (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \rightarrow+\text { + }+ \text { (r) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (r.-r) } \\
& \text { - } \\
& \text { () () إذا لا حظنا أن : } \\
& \text { !! ! (ra - r) على الترتيب : }
\end{aligned}
$$

$$
\begin{aligned}
& (r v-r)
\end{aligned}
$$

$$
\begin{aligned}
& (r \wedge-r)
\end{aligned}
$$

$$
\begin{aligned}
& \text { قيم ظا حـ ، حا ح ، حتا حـ بدلالة ظا } \\
& (r a-r) \\
& (\varepsilon \cdot-r) \\
& (\varepsilon 1-r)
\end{aligned}
$$

(للحصول على (ض اقسم البسط والمقام في كل منهما على حتا الأخيرة غير ممكن إلا إذا كانت بالنسبة للمتطابقة (ra-r مثـال (ro-r)

إذا كانت حاهـ
حا حه ، حتا
: الـ1
(لماذا؟)

$$
\begin{aligned}
& \text { حا } \\
& \frac{r \varepsilon}{r_{0}}=-\frac{\varepsilon}{0} \times \frac{r}{0} \times r= \\
& \text { حتاrه } \\
& \frac{v}{r_{0}}=-\frac{q}{r_{0}}-\frac{17}{r_{0}}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1 .}=\frac{\frac{\varepsilon}{0}-1}{r}=\frac{\Delta-1}{r}=-\frac{1}{r} \\
& \text { (علل لماذا اخترنا الحل الموجب) } \\
& \frac{-1}{1 . v}=\frac{-}{r} \\
& \frac{q}{1 .}=\frac{-\frac{\varepsilon}{0}+1}{r}=\frac{-1}{r}+1 \\
& \frac{r}{\Gamma . V}=\frac{\Delta}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثال (rq-r) } \\
& \text { í أوجد قيمة ظا } \\
& \text { : الحل }
\end{aligned}
$$

$$
\begin{align*}
& { }^{r}\left(1-r^{V}\right)=-\frac{1-\overline{r^{2}}}{1+\frac{r^{2}}{}}= \tag{لماذا؟}\\
& \text { (علل إممالنا الجذر السالب) }
\end{align*}
$$

$$
\begin{aligned}
& \text { مثـال (rV-r) } \\
& \text { أثبت صحة المتطابقة: : } \\
& \text { الحل : } \\
& \text { الطرف الأيمن }=\text { (} \\
& \text { (لماذا؟) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وبقسمة كلِ من البسط والمقام على حتاهـ. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{\Delta+1}=
\end{aligned}
$$

مثـال (rN-r)
اكب حا r س بدلالة حاس .
: الحـ
حا س = حا
=
($r=$

$$
\begin{aligned}
& \text { (حاس }= \\
& \text {. }{ }^{\text {(}} \text {) }
\end{aligned}
$$

تدريـب (r-r

والمتطابقة صحيحة
 اعتمد الاسلوب نفسه لإيجـاد طا ب س بـدلالة طاس ، أوضح أن القانون الناتج لايستخدم إلا ضمن شرطين يردان الى الشرط : س

تـــمـاريـن (H - 1)

-
(r)

حا هـ ، حا

191
(
($)$
(7) بدن استخدام الجداول أو الالَة الحاسبة أوجد قيم كلب مما يلي :

$$
\begin{aligned}
& \frac{\text { (9) }}{\text { (}) ~}
\end{aligned}
$$

(

$$
1+{ }^{r}+{ }^{r} \text { (Ir) }
$$

r - 9 قَوانـين التـحـويل :
نحتاج أحياناً إلى تحويل مجموع نسبتِن متثيَين (أو الفرق بينهما) ! الى حاصل ضلى ضرب نسبتين مثـثـين وبالعكس ، وسوف نستنتج في هذا البند مجموعة قوانين (أي متطابقات) تساعدنا على ذلل التحويل أوهِ
(r.-r)

نعلم أن: : حا (حـ (r) r)

$$
\begin{aligned}
& \text { حا (ح + د) + }
\end{aligned}
$$

كما يعطيان بالطـر (د) : حا
حا (ح + د) - ح
اتبع الأسـلوب نـفسه لاستنتا (د حتا (حـ + د) + حتا (حـ ـ د د)
حتا (ح + د) - حتا (ح - د)

ستحصل بذلك على المجموعة الأولى من قوانين التحويل :

$$
\begin{aligned}
& \text { (\&r-r) حا } \\
& (\varepsilon r-r) \text { ح } \\
& \text { حت } \\
& \text { حت }
\end{aligned}
$$

ولعلك تلاحظ أن القانون (0 - 0) - الاخير - يكتب أيضاً :
حتا (ح - د) حتا (حـ +د) ح ح

كما تلاحظ أن كل قانقن من هذه القوانين الأربعة يساعدك على تحويل حاصل ضرب نسبتِن

$$
\begin{aligned}
& \text { (} \varepsilon r-r)\left[(\nu-ح)-(د+\sim) \frac{1}{r}=-\frac{1}{r}\right. \\
& \text { (} \varepsilon \text { ح } \\
& \text { (} \\
& \text { : i } \\
& \text { (} \varepsilon 7-r)[(د+\sim) \text { ح }
\end{aligned}
$$

مثـال (rq-r)
احسب قيمة حتا حا 10 حا
: الـلـ

$$
\begin{aligned}
& \text { حتا }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{r-}=\frac{r}{\varepsilon}=(\overline{-r}-1) \frac{1}{r}=
\end{aligned}
$$

قلما نحتاج إلى المجمع (والفرق بين) جيبي الزاويتين حـ + د ، حـ - د أو جيبي تمامهما ، ولكن الذي نصادفه كيُراً جمع (أو طــرح) جيـبـي زاويتــين س ، ص أو جيــبـي تمـامهـما . أي أننا بحاجة إلى تحـويل كل من : حا س + حا ص ، حاس - حا ص ، حتا س + حتا ص ، حتا س - حتا ص إلى جـداء (أي حاصل ضرب) . فلو رجعنا إلى أي من القوانـين السابقة

$$
\begin{aligned}
& \text { (من) } \\
& \text { فإن الجمع يعطي } \\
& \text { والطرح }
\end{aligned}
$$

وبالتعويض في القوانين المشار إليها نجد :

$$
\begin{aligned}
& \text { ح } \\
& \text { ح } \\
& \text { حت } \\
& \text { (} 0 \text { (} 0 \text { (} \\
& \text { المتطابقة الأخيرة تكتب : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { حل إلى جـداء : } \\
& \text { ((} \\
& \text { : الــل } \\
& \text { () (1 (1) } \\
& \text { r= }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أثبت صحة المتطابقة : حـا ح ح ح } \\
& \text { : الـ1 } \\
& \text { (لماذا ؟) } \\
& \frac{ح \text { الطرف الايمن }}{\sim \text { ح }} \\
& \text { = }
\end{aligned}
$$

(1) استنتج من المتطابقتين : () (Y) استنتج من المجمععة الاولى لقوانين التحويل صيغـة لما تساويه ظاح . ظاد
(ع) في المثث P ب

(7) حل حا + + جتا ب إلى جـداء (للحـل : انكب حتا ب = حا (

تـــمـاريـن (r -
(1) بلمن أستخدام الجدامل أو الآلة الحاسبة أوجد قيم كلاْ ممــا يلي :

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

(Y)

$$
\begin{aligned}
& \text { (P) جتا } 9 \text { ح }
\end{aligned}
$$

$$
\begin{aligned}
& \text { •1. } \\
& \text { Pr ا - P } 7 \text { (}
\end{aligned}
$$

أثبت صحة المتطابقات الآتية (دن مناقشة شروط تطبيقها) :

$$
\begin{align*}
& \text { ح } \\
& \text { جr } \\
& \text { جـ } \tag{0}\\
& \text { جتا } \tag{7}
\end{align*}
$$

$$
\begin{aligned}
& \text { أثبت مايانتي : }
\end{aligned}
$$

$$
\frac{\Gamma V}{\varepsilon}=i_{0} \text { ح }
$$

(أثبت أن قياسات نزايا المثث P ب حـ تحقق العلاقة :
حا
(IY) لتحويل حا
المقدار = حاها س + حا ז س + حا 9 س
Y =
=

اتبع الأسلوب نفسه لتحويل حتاهس + حتا 1 س + حتا الس إلى جداء

$$
\begin{aligned}
& \text { (Tr) اختصر المقدار الآتي إذا كان معرفًاً : حاهس } \\
& \text { (إ) مانوع المتث الذي تحقق قياسات نفاياه العلاقة حتا + + حتا ب = حـاح }
\end{aligned}
$$

إذا كان المتغير في معادلة ما معطى بوساطة دالة (أو أكثر) من الدوال المثڤية (حتا ، حا ،
 r rا إلى قيم الدالة المُلّية التي تحتويها ، وفتَ ماتعلمناه في حل المعادلات الجبرية ومن ثم التوصل إلى قيم المتغير التي تشكل مجموعة الحـل . ومن هنا كان علينا أن نتعرف على طريقة حل كل من المعادلات الآتية والتي ندعـوها (المـعادلات المثثية الأساسية) :

$$
\begin{equation*}
\text { حتا } P=\text {, } P=\text {, } \tag{rlr}
\end{equation*}
$$

أوجد مجموعة الحل للمعادلة

لع

إذا كانت

- وإذا كانت P P =

شـكـ)

(انظـر الشكل (
ويكن القياس العام للزاوية س
الذي يمثل مجموعة الحل للمعادلة (or - r)
في τ
(س : س س =
مثال (rr-r)

أرجد مجموعة الحل للمعادلة FV حتا س - 1 =

$$
\begin{aligned}
& \text { • } \\
& \text { [}
\end{aligned}
$$

: الحل
[$1.1-$ - $] \ni \frac{-1}{r V}=1$ المقادلة $=1$ - $=1$
, الزاوية الموجبة هـ التي تحقق حتا هـ = أن المعادلة تكتب على الشكل : حتاس = حتا -ط- - وبالتالي

$$
\begin{aligned}
& \text { (r) في الفترة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (r) في الفترة [. . } \\
& \left\{\frac{b V}{\varepsilon},-\frac{b}{\varepsilon}-\right\}=\text {, ومجموعة الحـل } \frac{b V}{\varepsilon}=\text { س }
\end{aligned}
$$

(() في مجموعة الأعداد الحقيقية ع تكون مجموعة الحـل :

$$
\left\{v>r \cdot b ; r+\frac{b}{\varepsilon} \pm=m: س\right\}
$$

مـلحـوظـة (
لعلـك تلاحظ أن الحـلّين -
بتعوض م بالقيمتين : . ، ا على الترتيب . ولاضح لديك القياس الاول للزاوية الموجهة السالبة >بید

تدريـب (1^-r)
حل في ع كلأ من المعادلات :

$$
\text { - }=\text { حتا }
$$

مثـال (
(or-r) \quad أوجد مجموعة الحل للمعادلة
: الحـ
حسب
$1 \geqslant 2 \geqslant 1$ تعلم انن

وبالتالي فان :

شـــر (

هـ حيث حا هـ $P=$ وتصبح المعادلة (r $)$ حاس = حا هـ ويكن القياس الرئيسي للزاوية س

$$
\begin{aligned}
& \text { هو : ق (ب) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (كما هو واضـح في الشكل (}
\end{aligned}
$$

ويكن القياس العام للزاوية س الذي يمثل مجموعة
الحـل المـعادلة (
مثـال (

أوجد مجموعة الحـل للمعادلة : $c(د),[b r, \cdot](ح),[b, \cdots](\varphi),\left[\frac{b}{r} \cdots\right](P)$
: الحل
لـلك تذكر أن : ا
حا
$\left\{\frac{b}{7}\right\}$ فـك $\}$ (P;
\{曹 $\left.\frac{b}{7}, \frac{b}{7}\right\}$ (ب) في الفترة \{ $\left.\frac{b 0}{7}, \frac{b}{7}\right\}$ (ح (ح
((د (د في مجموعة الأعداد الحقيقية حجموعة الحـلـ

تدريـب (

حــل في ع كلاً من المعادلات :

$$
\text { (1 } \bar{Y}
$$

مثـال (
أوجد مجموعة الحل للمعادلة : طاس
: الحـل
بالرجوع إلى التعريف (r - 7) تستطيع الانتباه إلى أنه في هذه الحالة :

وبالرجوع إلى الملحوظة (
P = تستطيع أن تدرك أنه يوجد زاوية على الأقل هـ حيث ظاه (

طاس = طاهـ ويكن القياس الرئيسي للزاوية س هو :

ويكنّ القياس العام للزاوية س الذي يمثل مجموعة الحـل في ح للمعادلة (r ع عه) هو :

$$
\{v \gg \cdot \text {, هـ }
$$

مثـال (r-r-r) :
أوجد مجموعة الحل للمعادلة : ظاس + + = . على الفترات
$\tau(د),\left[-\frac{b}{r^{-}} \cdot \cdot\right](\neg) \quad,[b, \cdot](ب),[b r, \cdot](P)$
: الــل
طاس

$$
\begin{gathered}
{[b r, ~ \cdot] \text { في الفترة (P) }} \\
\frac{b 0}{r}=b r+\frac{b}{r}-=0 \\
-\frac{b r}{r}=b+\frac{b}{r}-=0 \\
\left\{\frac{b r}{r}, \frac{b 0}{r}\right\} \text { ومجموعة الحـل}
\end{gathered}
$$

(ب) في الفترة [. ، ط] مجموعة الحــل $\}$ [
(ح) في الفترة [•
(د) في ح مجموعة الحـل :

$$
\left\{\sim \Delta \ni \cdot b++\frac{b}{r}-=m: س\right\}
$$

((1) في المثال (
(Y) حـل في ع كلأ من المعادلات :
-
مثـال (rV-r)
أوجد مجموعة الحــل للمعادلة :

$$
\begin{aligned}
& \text { : الــل }
\end{aligned}
$$

بتحليل علاثي الحدود في الطرف الأيمن نجد :

$$
\begin{aligned}
& \text { • = (} 1 \text { - حتا })(1+\text { + } \mathrm{P} \text {) } \\
& \text { • }=1 \text { - } \\
& \text { و أو حتا } \\
& \frac{b \varepsilon}{r}, \frac{b r}{r}=ح \text { الحـل الانل : حتا حـ الفترة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { فتك } \\
& \text { مثـال (} \\
& \text { FV = حل في ع المعادلة } \\
& \text { استنتج مجموعة الحل في الفترة [. . . } \\
& \text { : الــلـ } \\
& \text { لو قسمنا حدود المعادلة على r لاصبحت } \\
& \frac{Y V}{r}=س-\frac{1}{r}-\infty \text { - }-\frac{\text { rr }}{\text { ح }} \\
& \text { أو : حتا •r. } \\
& \text { (أو : حتا (. } \\
& v \ni r \quad \text { rr. }+\dot{\varepsilon}_{0 \pm}=\omega^{\circ} r \text {. }
\end{aligned}
$$

ولاستنتاج مجموعة الحل في الفترة [. . . .

$$
\begin{aligned}
& \text { من } \\
& \text { •r^0 }=\text { ومن المجموعة : س = }
\end{aligned}
$$

[r^人 ' فتكن مجموعة الحــــل
تدريـب (r1 - r)
((ا أوجـــ مجموعـة الحــل في ع للمعادلة الــواردهَ في المـّال (] المجموعة التي توصلت إليها في الفترة [. . (Y) أوجد مجموعة الحل اللمعادلة المثّيّة في الفترة المعطاة : $b r>\nu \geqslant \cdot, \quad=1+\nu r^{2}-\sim r^{r}$ (r) حـ المعادلة : حتا

أوجد مجموعة الحـلـ المعادلة المثّيةّ في الفترة المعطاة
[br ، . [، . =
: الحل
باستخدام حا Y Y Y

أرجد مجموعة الحـل لالمعادلة المثلثية في الفترة المعطاة
الحل :
بما أن r جتا حـ + طا حـ = قـاحـ
(

$$
\text { إذن } 1 \text { = جتا }
$$

$$
\text { . = } 1-\text { 土 }^{r} \text { - }
$$

$$
\text { أو حاحـ = } 1
$$

$$
\frac{b}{r}=\sim \text { أو } \quad \frac{b 11}{7}, \frac{b v}{T}=\sim \quad \Longleftarrow
$$

$$
\begin{aligned}
& \text { br>> } \geqslant 6 \quad \rightarrow \text { r } \\
& \text { (P) بالتقدير الدائري • (ب) بالتقدير الستيني }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r } \\
& \text { أر r } \\
& \text { حاح = . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { حا } \\
& \text { (لماذا؟؟) } \\
& \text { جتا حـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سثال (}
\end{aligned}
$$

$$
\text { الحـل حـ = } \quad \text { (لماذا ؟) }
$$

$$
\left\{\frac{b 11}{T} ، \frac{b V}{T}\right\}=\text { إن مجموعة الحل بالتقدير الدانيري }
$$

$$
\text { \{rr. . ، .rl. \} = مجموعة الحـل بالتقدير الستيني }
$$

مثـال (
أوجد مجموعة الحـــل المعادلة المثلثية :
[br, •] قا حـ +

الحل

تدريـب (r -
(() أوجـد مجموعة الحـل للمعـادلة المثثية :
(Y) أوجد مجموعة الحل للمعادلة :
(إرشاد : استعمل قوانين ضعف الزاوية ثم استعمل طريــة المثال r - r)

$$
\begin{aligned}
& \text { نضع المعادلة على الصودة : } \\
& \text { قا حـ = - ظا حـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ويالتالي حـ } \\
& \text { فيكن : حا حـ } \\
& \varnothing=
\end{aligned}
$$

تـــــاريـن（

أوجـد مجموعة الحل المعادلات المثشية الآتية حسب الفترات المبينة أمامها （ب）بالتقدير الستيني －بالتقدير الدانري（P）

$$
\begin{aligned}
& \text { br > ح > . } \\
& \text { 「7. }>\rightarrow>\text {. } \\
& \text { br > ح > . } \\
& \text { 「7. } \ggg \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. } \\
& i \wedge . \geqslant-\geqslant \text {. } \\
& \text { ㄱ. } \geqslant \rightarrow \geqslant \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. } \\
& \text { in. }>\rightarrow \geqslant \text {. } \\
& \text { ㄱ․ } \ggg \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. } \\
& \text { br }>\sim \geqslant \text {. } \\
& \text { br }>\rightarrow \geqslant \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { ح }=\rightarrow \text { (} 1 \varepsilon \text {) } \\
& \text { (lo) } \\
& \text { حا }
\end{aligned}
$$

（ إرشاد ：قسـم حـود المعادلة على حتا ${ }^{\text { }}$ ، وناقش عما إذا كان ：
(
(17) حـل في ح المعادلة :
r =
(إرشاد : طبق قوانين ضعف الزاوية)
r - ا ا الـعـلاقـة بـين قـــاسـات زوايـا المثلث وأطـوال أضـلاعـه :
إن عناصر أي مثر P ب حـ هي أطوال أضلاعه :

وقياسات زناياه : : ، ب ، حـ
سنبحث في هذا البند عن العلاقات بين هذه العناصر
أولًا : قـاعدة جـيوب التـمـام :

في انُّكل (r - qع) المُث P ب حـ ، وضعنا زاويته P في وضبع قياسي بحيث تنطبق P على نقطة الأصل، [P ب] على الجزء الموجب لـحد السينات ، ورسمنا دائرة الوحدة التي مركزهـا P فقطعت [P حـ] في ن (حتا P ، حا P) (راجع التعريف r - ع) . ومن تشابه المُعلـُـين أ ن و ، P

$$
\begin{aligned}
& \frac{|\dot{u} P|}{|\nu P|}=\frac{\overline{\dot{\omega}}}{\sim د}=\frac{\overline{\jmath P}}{\lrcorner P} \\
& \frac{1}{ب}=\frac{P L}{\sim}
\end{aligned}
$$

ويكنن إذن :
س
ومن المتث ب حـ د القائم في د نجد :

$$
\text { } \mid \text { ح } د|+r| د|=r| \rightarrow \text { ب } \mid
$$

أو :

$$
\begin{aligned}
& \text { (}{ }^{r} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} 07-r \text {) بَ } \\
& \text { (} o v-r \text {) } \quad \text { (} \\
& \text { فيكن إذن : } \\
& \text { ويطرية مشابهة : }
\end{aligned}
$$

الحل
من العلاتة (

$$
\begin{aligned}
& \frac{1}{r}=\frac{(1+\bar{r}) r}{(1+\bar{r}) \varepsilon}=\frac{F V r+r}{(1+\overline{r V}) \varepsilon}= \\
& \text {.7. }=\hat{p} \Longleftarrow \\
& \text { ومن العلاقة (} 07-r \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{r V}=\frac{(T V+r) r}{(T V+r) r V r}= \\
& \varepsilon_{0}=\hat{ب} \rightleftharpoons \\
& \cdot v_{0}=\left(\varepsilon_{0}+{ }^{\circ} \tau^{\prime}\right)-i \wedge .=\hat{\Delta}
\end{aligned}
$$

مـلحـوظـة (

في المثـال (فإن عملية إيجاد العناصر المجهولة من أضلاع المـُلث حنواياه باسـخندام عناصره المعلومة (أو باسـتخدام معطيات أخرى كافـية) تـدعى : هـل المـــلث . مثـال (

$$
\begin{aligned}
& \text { : الحـ }
\end{aligned}
$$

العناصر المجهولة هي قياسات النوايا ، P ، ب ، حـ
or í

* ومن (حتا ب
(من الجداول أو الالة الحاسبة)

$$
\text { } q \wedge \approx \hat{ب}
$$

$$
{ }^{\circ} r .=\left(\circ r+{ }^{\circ} 9 \wedge\right)-\bullet \wedge \cdot=\wedge *
$$

مثـال (

يراد حفر نفق عبر جبل من النقطة p إلى النقطة ب انظر الشكل (r - • 0) فرصدت المسافة من النقطة ح إلى كل

| ب ب النفق = |

من علاقة جيب التمام في المثت P ب

$$
\begin{aligned}
& \text {., JVATI } \times(\text { rra })\left(\text { rrI) r }-{ }^{r}(\text { rra })+{ }^{r}(\text { rrI) }=\right. \\
& \text {. } P M A, r I \approx|ب P| \rightleftharpoons \text { \&VITA } \approx
\end{aligned}
$$

ثانياً : حسـاب مسـاحـة المثلث بمعرفـة ضلعـين والزاوية المصورة بينهمـا :
في كل من الشكلين (مساحة المثلث P ب

(or-r) (or
ع = حَ حا (b-
$\varepsilon \cdot \frac{1}{r}=r$
Pا

ع =

بالحـالتين :

$$
\varepsilon \cdot \frac{1}{r}=r
$$

أو :

أي أن مساحة المثت =

ثالثًاً : قاعدة الجيوب :

$$
\begin{aligned}
& \text { فأخيراً ، من (} \\
& (7 r-r) \\
& \text { حَ }
\end{aligned}
$$

مذه العلاقة التي ندعوها : قاعدة الجيوب أر علاقـة الجيوب . ههي تعني أن : قياسات أضلاع أي مـلث تتناسب مع جيوب النوايا المقابلة لها مــان (. $\varepsilon_{0}=\hat{p}$. r حـل المثلث
: الحل
لاحظ أن المجاهيل هي : حـ ، ري

$$
\begin{aligned}
& \text { وVY } \\
& \text { ((لماذا؟) } \\
& \text { (لماذاء) } \\
& \text { ir. }=\hat{Y} \quad \text { i } \quad \text { i. }=\hat{ب} \Longleftarrow \\
& \varepsilon_{0}=\hat{p} \quad \varepsilon_{0}=\hat{p} \\
& \text { (} 91 \mathrm{~s} 1 \mathrm{~d} \\
& i_{0}=\hat{\Delta} \quad V_{0}=\hat{\Delta}
\end{aligned}
$$

يوجد مثران يحتحان الشرعط المعطاة ．
（ ）

$$
\begin{aligned}
& \frac{\bar{Y}+\overline{7 V}}{\varepsilon}={ }^{\circ} \text { Vol }=\text { حیث حاح }
\end{aligned}
$$

＊ولحساب حَ في الحالة الثانية وباستخدام علاقة الجيوب نغسها تجد أن ：
（ تحقت من ذلا ）

$$
1, r_{0} \approx Y V-7 V=\overline{7}
$$

$$
\text { تدريب (r -r })
$$

 （Y）في متواني الأفلاع P ب حـ د ：：P ب｜＝س ،｜ب حـ｜＝ص ، قياس الزاوية P ب حـ＝هـ احسب مساحته ．طبْق ذال إذا علمت أن س＝．ا سم • ص＝ （r）مانوع المـث الذي يحتق العلاة P مثال（
－أثبت أنه لايمكن رسم المثث P

（ من الجداهل ）

$$
\begin{aligned}
& \text { •ر TEYA } \times \frac{\Lambda}{0}={ }^{\circ} \varepsilon \cdot L \frac{\Lambda}{0}=\mathrm{L} \\
& \text { 1., YイミA = }
\end{aligned}
$$

 ولايوجد مثلث يحتق معطيات المسآة

مـــال (
حـل المثلث P ب
: الحل
لاحظ أن المجاهيل مي:

$$
v 1, r m A=. \operatorname{viq} \times 1 r \times 1 . \times r-1 \varepsilon \varepsilon+1 \ldots=r_{p}
$$

ومن قاننن الجيب : حا
(من الجداول أو الآلة الحاسبة)

$$
.00 i q=\hat{ب}
$$

$$
\wedge \wedge \cdot \varepsilon \mid=(\varepsilon \varepsilon+\infty \quad i q)-\cdot i \wedge .=\hat{\sim}
$$

مثـال (
 : الحل
المجاهيل:

$$
\begin{aligned}
& \text { i }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تـهـارين (r - } \\
& \text { حل المثت P ب حـ في كل الحالات التالية : } \\
& i r_{.}={ }^{\prime} p, \quad V_{0}=\hat{ب}, \quad \quad \quad 7 r=\hat{p}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { •r } r=\hat{p}(r) \\
& \text { YAA }=\underset{\sim}{\sim} \quad, \quad \text { OOA }=\text { بَ } \quad . \\
& \text { •7ri. = } \hat{ب}(r) \\
& \text { Ir = ح , } 0=\text { بَ } \\
& \cdot \mathrm{rq} \text { ir }=\hat{p} \text { (} \varepsilon \text {) } \\
& \text { r.. = } \quad \text {, } \quad \text {. } \cdot i v=\hat{p} \text {, } \\
& \text { •. }=\hat{\sim}(0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { YV. } 9=\text { = } \quad, \quad \text { \&rot }=\text { 'P } . \\
& r=\bar{p} \text { (7) } \\
& \text { } \cdot \text {. }=\hat{p}(v)
\end{aligned}
$$

ضلعيه المتطابقين 7 م
(II) برمن أنه في أي مثث P ب حـ تحقق العلاتة :

ثم استخدم مذه العلاتة في حل المثث إذا علم أن :

(IY) رجل طوله IV. ست ، وتف منتمباً على أرض

أوجد طهل ظل الرجل على هذه الأرض إذا علمت

(يطلب الحـل في حالة الشكل المرسوم جانباً فقط) .

تـــمـاريـن عامـــة

$$
-\frac{b V}{1 r}-\frac{b}{a} \text {, }-\frac{b}{1 r} \frac{0}{r},-\frac{b}{\varepsilon}-(Y)
$$

(Y) (Y) (Y) إذا كانت > P م

$$
\begin{aligned}
& \text { () إذا كان }|\wedge,\rangle \Delta>\text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (0) أوجد قيمة كل مما يلي مستعينا بالآلة (أر بالجدارل) إن احتاج الأمر : }
\end{aligned}
$$

(V)
 بالحــركا في الاتجاه نفس مسافة س مترأ حتي أصبع طمل ظلله مرام ، فما طول المبي ؟ وماقية س بالامتار ؟ ((إذا كانت ظتا هـ =
(9) أوجد بدن استخدام الجدافل أو الآلة الحاسبة كلاً مما يلي :

$$
\begin{aligned}
& \text { (ب) حتا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1.) أثبت صحة المتطابقات الاتية : } \\
& 1=-\frac{1}{a^{r}{ }^{r}}+\frac{\left.-\frac{1}{r^{r}}(P)\right)}{}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 號 }
\end{aligned}
$$

أثبت مصحة المتطـــابتات الآتية :

$$
\begin{aligned}
& \text { ح }
\end{aligned}
$$

أوجد مجموعة الحل للمعادلات المثيُية الآتية (P) بالراديان ، (ب) بالدرجات .

$$
\begin{aligned}
& \text { br>ح } \quad \text {. } \quad \text { (lq) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yq. } \gg \geqslant \text {, , قا }
\end{aligned}
$$

(Y.) في الشكل بجانبة أثبت أن :

ثم اســتخدم الالة الحـاسبة لحساب ع إذا كانت :

$$
\varepsilon_{0}=\hat{\Delta} \cdot v_{0}=\widehat{ب} \cdot p l_{0}={ }^{\prime} p
$$

(YI) في الشكل بجانبه أثبت أن :

ثم استخدم الالة الحاسبة لحساب ع
-r. = بلماً بأن : بَ
P (YY)
الاله :
والثاني : متطابق الاضلاع والمطلوب :
$\frac{\text { (}}{}$

البــاب الرابع

الأعـــداد المركبـــة

$$
\text { ع - } \quad \text { نبذة تاريخـية . }
$$

ع - ع الحاجة إلى توسيع الأعداد الحقيقية.
. ع - ع الأعداد المركبة والعمليات عليها
. ع - ع الخواص الجبرية للأعداد المركبة ال
ع -
ع -
. الجذو التكعيبية للعدد 1 - ع
 الخوارذمي الذي بذذ في زمن خلافة الماممن هلم في الرياضيات والفلك حتى عينه المأمن رنيسأ
 العالم الإسلامي جامعات ، وتد كب الخوارذمي مؤلغ الشهير (كتاب الجبر والمقابلة) ولالل مرة في التـاريخ ، صيغت كلمة (جـبر) وظهرت تحت عنوان يدل به على علم : لم تـتاكد استقلطيت بالاسم الذي خص بب نتط ، بل ترسخ كذلك مع تصسد لمغردات تقنية جديدة معدة للدلالة على

الاشياء والعمليات (1)
والجدير بالذكر بالنسبة لموضوعنا ، أن الخوارذمي حل في كابه مذا معادلات الارجة الثانية وتطرق إلى وجود حالات ثلاث ، فإما أن يكن للمعادلة جذران مختلفان ، أو أن يكن لها جذران متساويان أو أن تكن المسآلة مستحيل (r) ، ريـذا مانعبر عنه اليوم بان المعادلة جذرين

 تخيلية ، وذلل في القرن السادس عشر الميلادي ، (أي بعد الخوارذمي بـمانية قرن) ، ويبدو أن

 (أي تخيلي) اللالة على العدد ا-T ، وقد ترجمنا هذا الرمز إلى (ت) إلا أن

الغضل - على مايبدو - في تتديم الاععاد المركبة بالصودة س + ص ت (x+iy) وتميُلها - IVVV) (Carl Gauss) بنقاط في المستي إلاحداثي يعود إلى الرياضي الألماني »غاوس (الذا (الذي أدرك دلالة هذه الالعداد في الجبر والهندسة .

أنت تعلم أن المعادلة : س + 1 = . ليس لها حل في مجمعة الاعداد الطبيعية ط ، وتد كان هذا مو الدافع الاساسي لتوسيع مذه المجموعة بإضافة عناصر جديدة إليها (هي مجموعة الاعداد المحيحة السالبة) للحمول على مجموعة الأعداد المحيحةصر، ولعــلك تذكر انه لمـ كانت صه لا تغي بالـغرض عندما واجهتنا معـادلات مثل المعادلة r س = 1 , كانت التوسعة من ص~ إلى مجموعة الاعداد النسبية ن لحل هذه المعادلة وأمثالها . ولعلك تذكر أيضاً أن معادلة مـثل : س Y = ليس لها حل في ن لان الجــذر التربيعي العــدد Y (أي FV) ليس عدداً نسبياً ، مما استوجب ضـم هذا العدد وأمــاله من الأعداد غير

لتد وجدنا أن مجموعة الاععاد الحقيقية ع ، بعمليتي الجمع والضرب المعرفتين ، أي النظام ذي العمليتين (ع ، + ، .) , تشكل ساحة واسعة للتعامل مـ المعادلات الجبرية ، ولكنها هي الاخرى لاتخلو من تصمد ، فالمعادلة :
وهي من أبسط معادلات الدرجة الثانية ، ليس لها حــل في ع ، معا حدا بمؤسـس علم الجـبر (الخوادممي) أن يطلق على أمــثالها : معـادلة مستحيلة ، لانه لايوجد عدد حقيقي يكن مربعه مساوياً - 1 ، فمربع العدد الحتيقي هو دوماً أكبر من (أو يساوي) المفر . رهذا يقودنا بطبيعة الحال إلى البحث عن مجموعة أوسع من ح تحتوي حل المعادلة (ع - 1) (وماكان على شاكلها). المطلوب إذن توسيع مجموعة الأعداد الحقيةية ح بإضافة عناصر جديدة عليها لنحمل على مجموعة جديدة كـ نسميها مجموعة الاعداد المركبة تحقق الشرطط التالية :

 r - أن يوجد عنصر ع

を - r مجـموعة الأعداد المركبة والعمليات عليهـ
لو طلب منك التحقق من أن V-I- هـو حل للمعادلة (ع - 1) ، فغالباً ما تحامل تعويض هذه القيمة بالتنغير س في تلك المعادلة فتكب

$$
\begin{aligned}
1+\overline{1-v} \times \sqrt{1-v} & =1+r(\overline{1-v}) \\
1+1- & = \\
i & =
\end{aligned}
$$

 رهذا مقبل من الناحية الشكلية ، غير أن الامْر ليس بهذه البساطة ، لان العدد الیا
 الضرب التي ليس لاينا لها تعريف خارج المجموعة
 ، وبالمل : إذا عرْفنـا العـد المركـب بأنه من الشكل : س فابن الإشكال في هذا التعريف هو أنه يتضمن : عملية ضرب بين ت厄 $\not \supset \neq$ اللحمول على ص. ت كما يتضمن : عملية جمع بين س وليـس لديـنا تعريـن لهــاتِن العمـليــــن خـارج المــموعة ع ، ولحل مذا ابإشكال ، سوف نعرف العدد المركب بأنه نُج مرتب من الأعداد الحقيقية.

وقد سبق لل أن تعرفت على النزج المرتب (س ، ص) من الاععداد الحقيقية بأنه عنصر من المجموعة وأنه ممثل بنقطة من المستوي الإحداثي ولعلك تذكر أن هناك تقابل بين مجموعة

الانراج المرتبة (س ، ص) ونقاط المستوي ،
شــكل(يقودنا إلى اعتبار المجموعة ح \times ع مملة بالمستوي الهندسي بكامله.
فإذا قلنا إن كل زفج مرتب (س ، ص) \ni ع
 بين صر ، صر أي أن :
(س, س ص,) = (سץ ، صץ)

كما نعرِّف عمليتي الجمع † \uparrow والضرب ه على مجموعة الاُعداد المركبة كـ على النحو الآتي $(r-\varepsilon) \quad($ r $)$ (وباعتبار مجموعة الأعداد الحقيقية ممثة بنقاط المحو السيني في المستوي الإحداثي ، فإن هذا يقودنا إلى اعتبار العدد الحقيقي س مساوياً العدد المركب (س ، .) أي أن : $(\varepsilon-\varepsilon)$ ᄃ \ni (س ، •) =
رهذا يعني أن مجموعةالأعداد الحقيقية ح هي مجموعة جزئية من مجموعة الأعداد المركبة كـ ، ونحصل بذلك على :

(لماذا؟)
= س, +سم
س, ه سץ = (س, ، .) \& (س ، •)
(لماذا؟)
= س, سم
، مما يعني أن تعريف الجمع والضرب على كـ مـو امتداد لتعريف هاتين العمليتين على ع
وبوسعنا أن نكب إذن :

من جهة أخرى ، فلعلك تلاحظ أن :

$$
(1, \cdot) \cdot(1, \cdot)=r(1 \cdot \cdot)
$$

(لماذا ؟)

$$
(.1-)=
$$

$1-=$
مما يعني أن (. ، 1) بحقق المعادلة (ع - 1)

مما سبق نستطيع تعريف مجموعة الاعداد المركبة على النحو الآتي :

$$
\text { تعريف (ع - } 1
$$

يعرف نـظام الأعداد المركبة (كـ ، + ، .) بأنه المجموعة ع × ع المــودة بعمليتي
الجمع والضرب المعرفتين بالمعادلتين :

ملحـوظـة (1)

(Y) كما مي العـادة سـنتحدث عن مجمـوعة الاعـداد المركـبة ك المكونة من الازناج المرتبة
(س ، ص) ونصن نعني بذلك النظام ذا العمليتين (ك ، + ، .)
ويسمى المستصي الإحداثي في تمثيله للاعداد المركبة : المستوي المركب .
 يسمى العدد المركب ت عددأ تخيلياً ، ليس لان هناك شكاً في وجوده ، ولكن اللتاكيد على أنه لا ينتمي إلى مجمـوعة الاعـداد الحقيقية ، وحقيقة الامر إن العدد ت لا يتطلب خيالاً أوسع لتقبله مما تطلــبـ العدد السالب -ا في الانتقال من الأعداد الطبيعية ط إلى الأعداد -المحيحة صـ

الصيغـنة الجبريـة للعـدد المركـب :
لأي عدد مركـب (س ، ص) نســطيع الآن ، اســتناداً إلى التعريف (ع - 1) والمساواة
(

$$
(0-\varepsilon) \quad \text { ت }=
$$

وبذلك نحمل على الصيغة س + ص ت للعدد المركب (س ، ص) . يسمى س في المــيغة (\& - 0) الجــزه الحـتيـتي من العدد المركب س + ص ت ويسمى ص ، أي معامل ت ، الجزء التخيلي . فالجـزء الحتـيقي من العدد (0 -

$$
\begin{aligned}
& \text { (}) \\
& \text { (1..) }=
\end{aligned}
$$

هو العدد الحقيقي ه ، والجزء التخيلي هو الع
انظر الشكل (
مثال (\&
اكتب الاعداد التالية بالشكل س + ص ت . $(0-, r)(r, 1) \cdot(0-, r) \cdot(r, ~)$ ثم مثلها في المستوي المركب
: الحل

$$
\overline{r-V} \times \overline{T r-V} \text { ، } \overline{\frac{r}{O}-l}, \overline{1 A-V: ~ ا خ ت م ر ~ م ا ي ن ت ي ~}
$$

(Y) عبر عن العلاقة (س, ، ص,) = (س ، صم)
باستخدام الميغة الجبرية .
(r) اكتب الاعداد المركبة بالصيغة : س + ص ت

$$
r(1, r) \cdot(r, r-) \circ \cdot(\cdots) \cdot(\cdots,-) \cdot(r, \cdot)
$$

(ع) اكتب الاعداد المركبة بشكل أنواج مرتبة

$$
ت r+r-\quad \text { • }+0 \text { ، } 0 ، ت
$$

تـــمـاريـن ()

$$
\begin{aligned}
& \text { (1) إذا كان ع } \\
& r \varepsilon(1-, r)+{ }_{1} \varepsilon(\cdot, 1)(\rightarrow) \quad r^{2} \cdot{ }_{1} \varepsilon(ب) \quad{ }_{r} \varepsilon(P) \\
& \text { (Y) أوجد حلمل المعادلات التالية في ك : }
\end{aligned}
$$

$$
\begin{aligned}
& \left.(1, ~ \cdot)={ }^{r} \text { (ح) (ح ه }\right)
\end{aligned}
$$

(r) مثل بيانياً كلأ من الاعداد التالية على المستوي المركب :

$$
\begin{aligned}
& \text { تr-1-= } r_{r}(ح) \quad=r-1=_{r} \varepsilon(ب) \quad=\varepsilon+r=r_{1}(P) \\
& r^{q}+r_{r}(0) \\
& r^{\varepsilon} \cdot r_{r}(b) \\
& r \varepsilon+{ }_{\imath} \varepsilon(-) \quad r \varepsilon+{ }_{\imath} \varepsilon(د)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{r}\left({ }_{r} \varepsilon+ی\right)(J)
\end{aligned}
$$

() قد يبدو لأل وهلة أن تعريف الضرب على كـ بالمعادلة (ع -

أبسط وأكثر مسايرة لتعريف الجمع بالمعادلة (ع - r) . حالل اكشاف بعض المشكلات
التي يقود إليها هذا التعريف البديل .
ع - ع الخـواص الجبـريـة لـلأعداد المـركـبـة :
مثـال (r-z)
لنفرض أن لدينا الاعداد المركبة

$$
\begin{aligned}
ت r+r & ={ }_{1} \varepsilon \\
ت 0-1 & ={ }_{r} \varepsilon \\
\because Y & =r_{r}
\end{aligned}
$$

نلاحـط أن النتـــجة التي توصـلـنا إليــا تتغق مع تعريف الجـمع والضـرب حسب

$$
\left.\begin{array}{rl}
: \dot{ن} \text { أذ التعريف } 1 \text { إ }(1-\varepsilon) & =(0-1)+(r, r) \\
(0-r, 1+r) & = \\
(r-, r) & =(0-, 1)(r, r) \\
(r+1 \cdot-(10-)-r) & =(r-, \mid V)
\end{array}\right)
$$

وبإمكان الطــالب أن يتحقـق من صدـة المســاواة في كل ممـا يلــي :

$$
\left(r_{r} \varepsilon+{ }_{r} \varepsilon\right)+{ }_{r} \varepsilon=r_{r} \varepsilon+\left(r_{r} \varepsilon+{ }_{r} \varepsilon\right)(r)
$$

$$
\left(r_{r} r_{r} \varepsilon\right)_{r} \varepsilon=r_{r} \varepsilon\left(r_{r}, \varepsilon\right)(\varepsilon)
$$

$$
\begin{gathered}
(ت r+ت 0-1)(ت r+r)=\left(r+r_{r}\right)_{\varepsilon} \\
(ت+1)(ت r+r)= \\
r-ت 0+r= \\
ت 0+1-=
\end{gathered}
$$

$$
\begin{aligned}
& { }_{r} \varepsilon+{ }_{1} \varepsilon={ }_{{ }_{1}} \varepsilon+{ }_{r} \varepsilon(1) \\
& r \varepsilon, \varepsilon=, \varepsilon \quad r^{2}(r) \\
& \text { كها ان : }
\end{aligned}
$$

$$
\begin{aligned}
& (ت 0-1)+(ت r+r)=r_{r}+i \varepsilon \\
& =(0-r)+(1+r)= \\
& \text { ت } Y-r= \\
& (ت 0-1)(ت r+r)=r \varepsilon \text { 兄 } \\
& \text { (}-0-)=r+(1) ت r+(ت 0-) r+(1) r= \\
& 1-=r \text { rer } 10+e r+e 1 .-r= \\
& \because V-I V=
\end{aligned}
$$

$$
\begin{aligned}
& 1 \Lambda-ت I r+=V-I V= \\
& =0+1-=
\end{aligned}
$$

معا يعني أن :

$$
{ }_{r} \varepsilon,{ }_{r} \varepsilon \text { r } \varepsilon=\left(r_{r} \varepsilon+r_{r}\right)_{r} \varepsilon(0)
$$

وفيما يلي سنعم النتائج التي توصلنا إليها في هذا المثال .
: (أ) خـواص التجـميع والإبدال والتوزيع
بمغة عامة إذا كان :

أي ثلاثة أعـداد مركبة ، فإنتا باتبـاع الخطوات السابةة ، وسنترك تفاصيل ذلك الطالب ،
نستتّع أن :
الإبدال في الجمع

$$
\varepsilon+{ }_{r} \varepsilon=r_{r}+{ }_{1} \varepsilon(1)
$$

الإبدال في الضرب

التجميع في الجمع

$$
\left(r_{r}+{ }_{r} \varepsilon\right)+{ }_{r} \varepsilon={ }_{r} \varepsilon+(r \text { + } \varepsilon)(r)
$$

التجميع في الضرب

تويع الضرب على الجمع

$$
r_{r} \varepsilon{ }_{1} r_{r} \varepsilon \varepsilon=\left(r_{r} \varepsilon r_{r} \varepsilon(0)\right.
$$

وهذه الخواص متوافرة في النظام (ك ، + + ، .) لانها متوافرة في النظام (ع , + ، . .)

> إذا كان P + ب تت هو العنمر المحايد الجمعي ، فابن :

من هذه المساواة هو (س + P) + (ص + ب) ت ، مما يعني أن :
س +P=س

$$
\cdot=ب \quad, \quad .=p
$$

أي أن العدد الحقيقي • ، وهو العنصر المحايد الجمعي في ع ، هو أيضا العنصر المحايد
الجمعي في كـ
وإذا كان P + ب ت هو العنمر المحايد الضربي في كـ ، فان

أي أن العنصر المحايد الضربي في كـ هو العدد الحقيقي 1 ، وهو أيضاً العنصر المحايد الضربي في ع كما تعلم .

> تدريب (£ - +)

عند إيجاد العنمر المحايد الجمعي وكذلك العنصر المحايد الضربي ، اكفينا في إيجاده باستعمال معادلة واحدة لان العملية إبدالية . أوجد العنصر المحايد الجمعي ، وكذلك الضربي باستععال المعادلة الاخرى في كل مرة

$$
\begin{aligned}
& \text { الايمن يساوي (P س - } \\
& \text { P }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ب = = }
\end{aligned}
$$

(جـ) النظير الجمععي والنظير الضريب :

لاي عدد مزكب س + ص ت يسمى العدد سَ + صَ ت نظيره الجمعي إذا كان :
(س + ص ت) + (سَ + صَ ت) = .
(س + سَ) + (ص + من) ت= .
لان . =. + . ت
سَ = -س ، صَ = -ص

٪
كما أن النظير الضربي سً + صنَ ت يحقق :

$$
\text { (} 1 \text { = (س + }
$$

وعندما يكن س + ص ت F = . فابن حل هاتين المعادلتين هو :

رهذا يعني أن النظير الضربي للعدد س + ص ت هو :

$$
(\urcorner-\varepsilon)
$$

(س + ص ت ت (-

تدريب() ؟ ؟)
استخدم الخواص الواردة في (P) ، (ب) ، (
(1) النظام (ك ، +) زمرة إبدالية .
(Y) النظام ((

$$
\begin{aligned}
& \text { صً = }
\end{aligned}
$$

(د) تعريف عمليتي الطرح والقسـمـة :
باستطاعتنا الان أن نعرْف ناتج طرح العدد المركب
عr = سץ + صט ت

من العدد المركب
ع, = س, + ص, ت
بالشكل ع - ع ع = ع + (- ع

(س, + ص, ت) - (سץ + صر ت) = (س, - سץ) + (ص, -- صץ) ت

وبالمثل نعرْن ناتج التسة

$$
{ }^{1-} \varepsilon \cdot \varepsilon=\frac{1 \varepsilon}{r \varepsilon}
$$

حيث ع -

لاحظ أيضا أن عَ = = . إذا كان عr = . . وبصفة خامة فابن :

$$
\begin{aligned}
\text { مثـال }
\end{aligned}
$$

$$
\frac{1}{1 \varepsilon}={ }^{1-}, \varepsilon
$$

$$
\frac{1}{5 r+1}=
$$

ت بضرب كلبمن البسط والمقام في ع, = $\quad \frac{-1}{r r+r-1}=$

$$
=-\frac{r}{0}-\frac{1}{0}=
$$

$$
\frac{-r+1}{E-r}=-\frac{1 \varepsilon}{r}
$$

$$
\begin{aligned}
& \text { مرافق المقام : }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{7+1}{1 .}+\frac{r-r}{1 .}= \\
& =\frac{v}{1 .}+\frac{1}{1 .}= \\
& \text { تدريب (\& 0) } \\
& \text { أثبت أن } \\
& \text { •少 } \quad \frac{1}{\varepsilon}=\left(\frac{\overline{1}}{\varepsilon}\right) \text { (ب) } \\
& \rightarrow \ni \text { とلك }
\end{aligned}
$$

تـــــــارين（（－$)$
（1）ضبع المقادير التالية في المودة س＋ص ت

$$
\begin{aligned}
& \frac{1}{\Xi-1}-\frac{1}{\Xi+1}(\mathrm{~s}) \frac{r(ت+1)-1}{ت r-r}(\sim) \frac{-+1}{ت-1}(4) \frac{1}{\Xi+1}(P) \\
& \text { (Y) على افتراض أن ع } \\
& { }^{r} \bar{\varepsilon}-{ }^{r} \varepsilon(د) \quad \frac{\bar{\varepsilon}}{\varepsilon}(\rightarrow) \quad \bar{\varepsilon}-\varepsilon(ب) \quad \bar{\varepsilon}+\varepsilon(P) \\
& \text { (} \bar{\varepsilon}+\varepsilon \text {) } \frac{1}{Y} \text { (} \\
& \text {. أن الجزه التخيلي مو } \\
& \text { • } \bar{\varepsilon}=\overline{\bar{\varepsilon}} \text { 部 } \\
& \text { (0) ضـع الاعداد التالية في الصمدة س + ص ت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { () () تُ (}
\end{aligned}
$$

إرشاد : لاحظ أن ت
(7) ضـع المقادير التالية في الصودة س + ص ت

$$
\begin{aligned}
& (\Xi-r \text {) }(ت+\bar{r})(P) \\
& -\frac{r}{-}-\frac{+r}{-}+\frac{r}{-}(ب)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{r}\left(=-\frac{1}{r}-\frac{\Gamma}{r}\right)+{ }^{r}\left(=\frac{1}{r}+-\frac{r}{r}\right)(\Delta) \\
& \varepsilon\left(=\frac{-1}{r}+\frac{-\frac{1}{r}}{r}\right)(\Delta)
\end{aligned}
$$

احسب ناتج القسمة (V)

$$
\begin{aligned}
& ت+\bar{r}={ }_{r} \varepsilon \quad, \quad \bar{r}+1={ }_{1} \varepsilon(p) \\
& ت-1={ }_{r} \varepsilon \\
& \because=\varepsilon \text { (} \quad \text { (} \\
& { }^{\varepsilon}(=-1-)={ }_{r} \varepsilon \\
& 1=, \varepsilon \quad(\rightarrow)
\end{aligned}
$$

(1 (

$$
\text { (9) أوجد حلط المعادلة عץ = } 1 \text { في كـ }
$$

هي زمزة دائرية مولدها العدد ت
ع - ه جـذور المعـادلـة التريبـعيـة

ينتع لنا آفاقاً جديدة في حل المعادلات الجبرية ، ويسد ثغرات كثيرة كانت موجقة في مذا الموضوع ．فلنظطر إلى الامثة التالية ：

مثـال（ \＆ع ）

بإكمال المربع على ع ، نحصل على ：

$$
\varepsilon-=r r-a=r^{r}(r-\varepsilon)
$$

$$
\overline{\varepsilon-V} \pm=r-\varepsilon \longleftarrow
$$

$$
\overline{\varepsilon-r} \pm r=\varepsilon \Leftarrow
$$

وهي النتيجة نفسها التي نحصل عليها باستخدام قانن حل معادلة الدرجة الڭانية ：

وباستطاعة الطالب أن يتحتـت من ذلك بالتعـوـض في المعــــادلة ．
（ لاحـظط أن هــذه المعـادلة لايـوجــد لــا جـنو حـيــية ）．
والمثــال التـالي تعمـيم لمــا سبق

$$
\begin{aligned}
& \begin{aligned}
& \frac{\partial r-r \eta}{\text { or }} \pm 1 \\
& \frac{r-V}{r-r}=\varepsilon
\end{aligned} \\
& \text { TーV } \varepsilon \downarrow+r= \\
& \because \pm r= \\
& \overline{I-V}=\text { حيث }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أوجد جنو المعادلة } \\
& \text { : الحل }
\end{aligned}
$$

أوجد جنو معادلة الدرجة الثانية :
$(\wedge-\varepsilon)$

$$
(9-\varepsilon)
$$

. =

حيث
: الحـل
من قانن حل معادلة الدرجة الثانية

$$
\frac{\sim P \varepsilon-r}{P r} \pm ب-=\varepsilon
$$

. نميز بين ثلاث حالات تحددها إشارة المقدار بr - ع
الحالة الاولى : ب٪ - ع
في مذه الحالة يكن للمعادلة جذران حقيقيان هما :

$$
\begin{aligned}
& \text { الحالة الثـانية : بr - }
\end{aligned}
$$

$\frac{ب}{\text { ع }}$

- الحـالة الــالـة : ب٪ -

في مذه الحالة نلاحظ أن :

$$
\begin{aligned}
& \overline{(r-ح p q)-V}=\bar{\sim} p \varepsilon-r^{r} \\
& \overline{1-V} \overline{r_{4}-\Delta p q}= \\
& =\overline{r-\perp p q}=
\end{aligned}
$$

فيترتب على ذلك أن المعادلة (\& - 1) جذرين مركبين ، هـا :

$$
=\frac{r_{Y-\sim} P \varepsilon \varepsilon}{P r}-\frac{ب-}{P r} \cdot \frac{r_{Y-} \sim P \varepsilon}{P r}+\frac{ب-}{P r}
$$

بناء على ذلك بإمكاننا أن نبدي الملاحظات التالية على حلول المعادلة (1 -
(1) لمعادلة الدرجة الثانية جذر واحد على الأتل ، أو جذران على الاكثر في كـ .

$$
\begin{aligned}
& \text { (} \\
& \text { (} \\
& \text { تدريب (؟ - } 7 \text {) } \\
& \text { (1) حـــلـ في كـلا من المعادلات الآتية : } \\
& 1={ }^{r}{ }^{\prime}(\mathrm{C}) \quad .=1+\varepsilon+{ }^{r} \varepsilon(P) \\
& \text {. } \left.=r+\varepsilon r r+{ }^{r} \text { r (}\right) \\
& \Lambda 1={ }^{\varepsilon} \varepsilon(\rightarrow)
\end{aligned}
$$

(Y) كّن معادلة من الدرجة الثانية عرف جذراها كما يأتي :

$$
\begin{aligned}
& =\frac{1}{r}-\frac{1}{r} \quad \text { (الجذران } \quad \text { (P) } \\
& \text { (ب) الجذران هما: }
\end{aligned}
$$

(r) ماهو الجذر الآخر لمعادلة من الدرجة الثانية أحد جذريها r-ō ت ؟ وماهي المعادلة ؟
(ب) إيجـاد الجـذور الـتربيـعـيـة للعـدد المركـب :
مثـال (£ -) :
احسـب الجـنود التربيعية العدد + + ع ت

على افتراض أن س + ص ت هي المصرة العامة للجنر التربيعي ، فإن :

نستنت من المعادلة الثانية أن س F
الاولى نجـد أن :

بعد الضرب في س׳ وإعادة الترتيب
بعد تحليل الطرف الأيمن

$$
\begin{aligned}
& \left.r=r\left(\frac{r}{w}\right)-r m\right) \\
& \cdot=\varepsilon-r m-r\left(r^{m}\right) \\
& \cdot=(1+r(س)(\varepsilon)
\end{aligned}
$$

ع

مها يعني أن : س
ولكن بما أن س عدد حقيقي ، نستبعد الحالة س =
 إذن للعدد r +
تدريـب (\& - V)

تحقّ من نتيجة المثال (ع - ه) بتربيع كل من الجذرين .
مثـال (£-7)

أرجــد الجـنـو التربيعية للعدد - ت

$$
\begin{aligned}
& \text { (س } \\
& \text { س } \\
& \text { ع = }
\end{aligned}
$$

: الحـل
افرض أن س + ص ت مي الصودة العامة للجنر التربيعي ، إذن :

$$
\begin{aligned}
& \text { (س + ص ت (} \\
& \text { (} \\
& \text { 1- = }
\end{aligned}
$$

من المعادلة الثانية نحصل على ص = $\frac{1}{\varepsilon}={ }^{\varepsilon}$ المعادلة الاولى لالحمصل على

(() تحقق من نتيجة المثال (ع - 1)) بتربيع كلبمن الجذرين :
(Y) أوجد الجنو التربيعية للكعداد الآتة :

تــمـارين ()

أرجد جـنـو المعادلات التالية :

$$
\begin{array}{rlrl}
& =r+\varepsilon \varepsilon+r^{r}(r) & & =9+r^{r}(1) \\
& \frac{q}{\varepsilon}-\varepsilon^{r}=r^{\prime} \varepsilon(\varepsilon) & \quad=1+\varepsilon+r^{r}(r)
\end{array}
$$

اسـتخرج الجنود التربـيعية لكل من المــادير التالية :
$\because(0)$

$$
\begin{array}{r}
=\frac{r V}{r}+\frac{1}{r}(\eta) \\
\quad=\varepsilon-r(v)
\end{array}
$$

أوجد قيم س وَ ص الحقيقيتين في كل من المعادلات التالية :

أوجد س ، ص \rightleftharpoons ع التي تحقق المعادلة
(IY) أوجد جميع جنو المعادلة

$$
\text { r-= }=\frac{1}{r_{\varepsilon}}+{ }^{r} \text { r أوجد ع التي تحقق (}
$$

$$
1+\frac{r}{r_{\varepsilon}}={ }^{r} \varepsilon \text { أوجد ع التي تحقق (1) }
$$

ع - 1 التمثيل الهـندسـي للأعداد المركبـة
(أ) القيمـة المطلقة للعدد المركب
أشرنا في البند (ع- ז) إلى إمكانية تمثيل العدد المركب س + ص ت بالنقطة ن = (س ، ص) في المستوي الإحداثي .

$$
\begin{aligned}
& \text { • =) (1.) } \\
& \text { I = (} \text {) (} \text {) (II) }
\end{aligned}
$$

$$
\begin{aligned}
& 1=(\text {) })\left(\begin{array}{r}
\text { (}) ~(1) ~
\end{array}\right.
\end{aligned}
$$

ولكن النتطة ن في المستوى تحدد تطعة المستقيم الموجــبة من نتـطـة الأصــل

م = (• • •) إلى ن ، والتي يرمز لهـا بـ وعليه فابن المتجه م نذّهو ممثل آخر العدد المركب س +ص ت

تعـرـف (
القيمة المطلقة للعدد المركب ع = س + ص ت ، والتي يرمز لها بالرمز | ع | ا تعـرف بانـها |ع

يتضنح من هذا التعريف انن القِمة المطلقة للعدد المركب هي عدد حقيقي غير سالب
 نظرية فيـُاغودس ، أي المسافة بين موُ ن ، كما هو واضح من الشكل (ع - 7)) .

ويما أن :

$$
\begin{aligned}
r_{v}+{ }^{r} w & = \\
\bar{\varepsilon} \varepsilon v & =|\varepsilon|: ~ ف ا ن \\
\bar{\varepsilon} \varepsilon & ={ }^{\prime}|\varepsilon|
\end{aligned}
$$

$$
(1 .-\varepsilon)
$$

$$
\begin{aligned}
\frac{\bar{\varepsilon}}{r|\varepsilon|}=1-\varepsilon & =\frac{1}{\varepsilon} \\
\frac{\bar{r}, \varepsilon}{r_{1}} \frac{1}{\varepsilon \mid} & =\frac{1 \varepsilon}{r \varepsilon}
\end{aligned}
$$

أثبت أن \mid |
(ب) الصيغة المثلثية للعدد المركب :
سبق أن أشرنا إلى إمكانية تميل العدد المركب
ع = س + ص ت
(v-i) (

في المستـوي الإحـداثي بالنــطـة ن ذات الإحــداثي السيني س والمـادي ص . والآن سـتـعرف على طـريقة أخرى للتعبير عن ع . انظر إلى الشكل (\& -) ولاحظ أن

$$
\begin{aligned}
& \text { س = | } \\
& \rightarrow \text { ص }
\end{aligned}
$$

حيث هـ هي الزاوية المحموة بين نصف المستقيم [م سـ ونصغ المسـتَتيم [من ، فهي تحدد الدوران الذي يحل [م سى إلى [م ن وسنتفق على اعتبار هــ موجبة إذا كان هذا الدوران
 نلاحظ أن هـ > • بينما هـ > • في الشكل (ع - ^) تسمى هـ الزاوية القطبية للعدد المركب ع
 ع

تسمى هذه الصيغة الاخيرة بالميغة المثية للعدد المركب ع ،

ضـ العدد المركب في كل من الحالات التالية في الميغة الديكارتية ：

$$
\begin{aligned}
& \varepsilon_{0}=, \rightarrow \quad r=|, \varepsilon|(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { •的 }-r_{r} \rightarrow \quad 1=|r|(r) \\
& \text { : الحـل }
\end{aligned}
$$

$$
\begin{aligned}
& \left(=\frac{1}{r^{2}}+\frac{-1}{r^{2}}\right) r= \\
& \because F+M=
\end{aligned}
$$

$$
\begin{aligned}
& \text { ت - = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}{ }^{\circ} \text { の.-) } \text { (} \text {) } \\
& \text { ت - = }
\end{aligned}
$$

（1．－

نلاحــظ في هذا المثال ان ：
ك ع＝
 كما يتضـح من المــــال التالي ：

في الميغة المثية :

$$
\begin{equation*}
E F V+1-=r \tag{r}
\end{equation*}
$$

$$
\begin{equation*}
v-=r_{r} \tag{r}
\end{equation*}
$$

$$
=-1=\varepsilon \text { (1) }
$$

: الحل

$$
{ }^{r} 1_{0}=,
$$

v=

$$
(=\cdot+1-) v=
$$

$$
\begin{aligned}
& \text { i i人. = }
\end{aligned}
$$

$$
\begin{align*}
& \text {, وبالتالي : ع, } \\
& |v-|=|r| \tag{Y}\\
& v= \\
& v-=r
\end{align*}
$$

$$
\begin{aligned}
& \overline{r v}= \\
& \frac{1}{r^{r}}=, \quad \text { فان : جتا هـ, }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{r}{(1-)+1 V}=|, \varepsilon|(1) \\
& F= \\
& \text { بما أن: }
\end{aligned}
$$

$$
\begin{aligned}
r \overline{r r})+r^{r}(1-) r & =|r \varepsilon|(r) \\
r & =
\end{aligned}
$$

$$
\begin{gathered}
\frac{\Gamma V}{r}={ }_{r} \rightarrow L_{ج} \cdot \frac{1}{r}-=r_{r} \rightarrow \text { جت } \\
\cdot r q \cdot\rangle_{r} \rightarrow \geqslant \cdot \\
\cdot \mid r \cdot=r_{r} \perp \Leftarrow
\end{gathered}
$$

(ir-\&) (
(1) اكتب بالصيغة المـلثية كلأ من الأعداد المركبة الآتية :

$$
\begin{aligned}
& \because+1-=\varepsilon \text {, } \quad-1=\varepsilon \text {, } \quad-1-=\varepsilon \text {, } \quad=+r=\varepsilon
\end{aligned}
$$

(Y) اكتب العدد المركب بالصيغة : س + ص ت إذا كان :

$$
\cdot i r .=\Delta, T R=|\varepsilon|(ب) \quad{ }^{\prime} \quad, \quad r o=\Delta \quad r=|\varepsilon|(P)
$$

(جـ) التفسـيـر الهندسـي لعـملية البجمع ع
(P) لنفرض أن العددين المركبين

$$
\begin{aligned}
& \text { ع, = س, + صر ت } \\
& \text { ع ع = سץ + }
\end{aligned}
$$

مثـلان بالنتطتين
ن, (س, ، ص,) ، نץ (سץ ، صی)

على الترتيب . إذن المجموع
ع, + عr = (س, + س) + (ص, + صم) ت

ممثل بالنقطة نم (س, + سץ ، صر + مصر)
الآن لاحظ أن :
ميل المستقيم ק ن, = ميل المستَيم نץ نr = صسا

$$
\text { ميل المستقيم } \text { نَ = ميل المستقيم ن, نr = سَ صِ }
$$

 متوازي أضلاع • أي أن مجموع العددين ع ، عr ممثل بالرأس الرابع لمتواني الاضضلاع الذي

 (د) أما التفسير الهـندسي لعملية الضرب عاعر

فتّضح بشكل جلي إذا عبرنا عن ع، ع
بالصيغة المثمية :
) , $\boldsymbol{\text {) }}$ ه
)
(10-

$(i r-\varepsilon)$

وبذلك تَّخذ الميغة (ع - الشك) الشكل :

$$
\begin{aligned}
& \text { er (جتا هـ, جا } \\
& \text { ومن المتطابقتين (} \\
& \text { جتا ه, جتا هـ - - جا هـ, } \\
& \text { جتا ه, جا }
\end{aligned}
$$

مثال (

باعتبار
: الحل
يوضح الشكل (ع - 17) أن ع, + ع مهو الرأس الرابــع لـتـواني الأضـلاع الذي شنسـ

محددة بـ ع ‘「 م‘ع
كها أن ع -
هو الرأس الرابع لمتوازي الأضلاع
الذي شُسس الاخرى هي ع, ، م ، 'عـع
رالحصمل على ع, ع, نلاحظ أن :

$$
\begin{aligned}
\bar{r}_{r} & =\overline{9+9}=|, \varepsilon| \\
r & =\overline{1+r}=|r \varepsilon|
\end{aligned}
$$

() \quad (Cr . $=r$
إنن ع, عـ ممثل بالمتجه الذي طوله

$$
F r=|r \varepsilon| \mid \varepsilon
$$

 لاحظ أن الزاوية التي تمثل هـ, + هـ فـ في الفترة [• ، ، . . هي هـ, + + +

تدريب (\& - 11
(1) في المثال (ع - 1) أوجد المتجه الذي يمث العدد المركب ع - ع, ثم تحقق من أن :

- مستخدماً الرسم () - = =
- (Y)

()
إرشاد : لاحظ أن : ع ع • ع • ع
(r)
(ب) قـانـــون دي مواقَـر :
من الميغة المثالشة (ع - r|) لصاصل الضرب ع, عـ نستخلص أنه إذا كان :
$(1 \varepsilon-\varepsilon)$

$$
\begin{aligned}
& \text { (} \\
& \text { فإن : () } \\
& \text { (}
\end{aligned}
$$

وعندما تكن | ع|=
(جتا هـ + ت حا هـ) = جتا (ن هـ) + ت جا (ن هـ)
(De Moivre) والتي تعرف بنظرية دي موافر

تدريـب (\& -
(1) اكتب تفصيلز لبرهان (

$$
{ }^{n}\left(\frac{ت}{r}+\frac{\Gamma V}{r}\right) \text { (r) }
$$

(() عمليـة الـقسـمـة :
لعلك تستنـته بسهقالح ان مرامق ع
$(1 v-\varepsilon)$

$$
\text {) } \mid \text { (} \mid \text {) } \mid=\bar{\varepsilon}
$$

ويما انن حتا (- هـ) = حتا هـ ، حا (- هـ) = = ه فإن بوسعنا أن نعيد كابة (IV -
$(1 \wedge-\varepsilon)$

سنترك لك استخدام (1 (
لتحمصل على ناتج قسمة ع, =
على عr
(19- ع) لتحصصل على
مثـال (\& - •

باعتبار ع

: الحـل
بالرجوع إلى مثـال (- 9)

$$
\begin{aligned}
& \because r .={ }_{r} \rightarrow \cdot \varepsilon_{0}=, \rightarrow \quad r=|r \varepsilon| \cdot \bar{r} r=|, \varepsilon| \\
& \text { ومن (}
\end{aligned}
$$

$$
\begin{aligned}
& (ت+\cdot) \backslash \Lambda= \\
& -1 \mathrm{~A}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (لماذا؟) } \\
& \text { [(`へ.)) } \\
& {[.+1-] 7 \varepsilon=} \\
& \text { า } \varepsilon= \\
& \text { ومن (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (لماذا؟) }
\end{aligned}
$$

$$
\begin{aligned}
& =r_{0.0+., 00} \approx \\
& \text { تدريـب (} \\
& \text { أوجـد ناتج كل مما يأتي }
\end{aligned}
$$

$$
\begin{align*}
& \text { " }\left[\frac{b}{\varepsilon}-L=+-\frac{b}{\varepsilon}-ح\right. \text { حتا } \tag{r}
\end{align*}
$$

تـــمارين ((-
(1) ارسم المتجهات التي تمل الاعداد التالية :

$$
=1 .-1 .-(د) \quad=r-r l(ب) \quad 1-(P)
$$

(Y) أرجد القيمة المطلقة| | التمرين (() ، ثم ضع كلاُ من مذه الاعداد في الميغة المثيّة .

اكتب الأعداد التالية بالصوة س + ص ت :

$$
\begin{aligned}
& \text { (} \\
& \text { [} \\
& \text { ارسم المتجهات الممثة للاكداد : } \\
& ت r={ }_{r} \varepsilon \text {, } \quad-\varepsilon={ }_{r} \varepsilon \quad=0+0={ }_{1} \varepsilon
\end{aligned}
$$

ثم عين على المستصى المركب المتجهات الممثة للأداد

$$
\frac{1 \varepsilon}{r^{\varepsilon}}(\rightarrow) r_{r} \varepsilon r_{,} \varepsilon(د) \quad r_{r} \varepsilon(\rightarrow) \quad r_{\varepsilon}-r_{r}+{ }_{\varepsilon} \varepsilon(ب) \quad r_{r}+, \varepsilon(P)
$$

(0) استخدم متباينة المثت ، والتي تنص على أن مجموع طولى اني ضلعين في مثلث لايقل عن طهل الضلع الثالث في إثبات أن :

$$
\begin{aligned}
& s \ni_{r} \varepsilon \text { •ع لكل } \quad\left|r_{r} \varepsilon+\varepsilon\right| \leqslant|r|+|, \varepsilon| \\
& \text { (استخدم الميغة () أ } \\
& \text { ر وضح إجابتك بالرسم } \\
& \text { (V) استخدم الميغة ((V) (} \\
& { }^{1 \varepsilon}\left(\Xi \Xi^{r}-1\right)(1) \quad{ }^{r_{0}}\left(\frac{\rightleftharpoons}{r}+\frac{r^{2}}{r}\right)(\rightarrow) \quad{ }^{1}(\Xi+1)(ب) \quad{ }^{v}=(P)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(ت+1)}{r(2)} \quad \frac{ت+M}{ت-1} \text { (ب) } \quad \frac{ت+1}{ت}(P) \\
& \text { (V - ₹) }
\end{aligned}
$$

$1=T^{r}$: نحن نعلم من دراستنا السابقة أن للعدد الحقيقي ا جذراً تكعيياً واحداً هو

ليس لها حل في
 لنفرض أن ع = س + ص ت جذر تكعيبي للعدد ا ، فهو إذن يحقق المعادلة (ع - r)

$$
\begin{aligned}
& 1={ }^{r} \varepsilon \\
\cdot & 1-r_{\varepsilon}
\end{aligned}
$$

بتحليل الطرف الأيمن
إنن :

من المعادلة الاولى نحصل على :
ومن المعادلة الثانية نحصل باستخدام القانون (ع - 9) على

$$
=\overline{-r} \frac{r}{r}+-\frac{1}{r}-=\overline{\varepsilon-1 r}+1-=\varepsilon
$$

وبذلك نجد أن العدد الحقيقي 1 ثـلائة جذو :

والجذران الآخران هما العددان المركبان المترافقان

$$
\begin{array}{r}
=\frac{\bar{r}}{r}+-\frac{1}{r}-=r_{r} \\
\bar{r}=\frac{\bar{r}}{r}--\frac{1}{r}-=r_{r}
\end{array}
$$

$$
\begin{aligned}
-\frac{r}{\varepsilon}+-\frac{1}{\varepsilon} V & =|r| \text { ע } \mid \text { 官 } \\
1 & = \\
|r| & =
\end{aligned}
$$

 التي مركزهـا نقطة الأصل ونصف قطرها واحــد .

بــند العدد \التكميبيا لاحظ أيضا أن زاوية عr القطبية هـ ، ، تحـقق :

$$
\begin{aligned}
& \text { ج }
\end{aligned}
$$

فإذا
وبما أن ع تسـاوي - هـr = - . .
.وبذلك نحصل على توزيع الجذدر التكعيبية ع, ‘ عع ، عr اللعدد ا على دائرة الوحده المبين

ع, • عr • عr ^ي لؤوس مثلث متطابق الأضلاع مرسوم في دائرة الوحدة (لماذا ؟)
تدريـب (£ - £ 1)

$$
1={ }_{r}^{r} \varepsilon={ }_{r}^{r} \text { ع (1) }
$$

$$
{ }_{r}^{r}{ }_{r}{ }_{r} \varepsilon \text { وأن }{ }_{r}^{r}={ }_{r} \text { أثبت أن }
$$

(r) أثبت أن المجموعة

$$
r_{s}={ }_{1} \cdot r^{r_{s}}={ }_{r} \cdot v={ }_{r} \quad \text { العدد }
$$

متـان (11)

|حسب•الجذو التكعيبية العدد A

: الـلـ

$$
\{\bar{s}, v, 1\}=\left\{=-\frac{\bar{r}}{r}-\frac{1}{r}-,=\frac{r \underline{r}}{r}+\frac{1}{r}-, 1\right\}
$$

إذن :
$\{\bar{s}, v, 1\} \exists \varepsilon \frac{1}{r}$

$$
\left\{\bar{s} r, v^{r}, r\right\} \ni \varepsilon \Leftarrow
$$

أي أن الجذهد التكعيية للعدد 1 -
لاحــظ هنا أن الجـذر لا تخـــف عن نظيراتها الجذو التكعيبية للعدد ا إلا من حيث الـقيمة , $r=\bar{\wedge} V^{r}$ المطلقة ، فهي موزعة بانتظام على الدائرة التي مركزها نقطة الأصل ونصف قطرها
كما في الشكل (ع - 19) ، وأولها هو الجـذ الحقيقي r المعروف على الزاوية القطبية .

جـنـد العدد 1 التكعيبيخ

أثبت أن مجموع الجذو التكعيبية للعدد يساوي الصفر ، ومن ثم استتج أن مجموع الجنو التكعيبية للعدد 1 أيضا يساوي الصفر

$$
\begin{aligned}
& 1={ }^{r}\left(-\frac{\varepsilon}{r}\right) \Longleftrightarrow{ }^{r} r=\Lambda={ }^{r} \text { المطلوب مو إيجاد العدد المركب ع الذي يحقق } \\
& \text { وقد وجدنا أن مجموعة الحل لهذه المعادلة الأخيرة هي الجذد التكعيبية للواحد ، أي }
\end{aligned}
$$

$$
\text { ثــــــل (\& - })
$$

جــنو العدد - ا التكعيبح

أوجد الجذد التكعيية للعدد الحقيقي - 1
: الـدل
افرض أن ع أحد جذو - 1 التكعيبية إذن :
${ }^{r}(1-)=1-=r_{\varepsilon}$
$1=r(\varepsilon-)=r\left(\frac{\varepsilon}{1-}\right) \Longleftrightarrow$
فنستنتج أن - ع جذر تكعيبي للعدد ا، في بالتالي
تــمـاريـن (ء - ه

استخدم فكرة المثال (ع - II) لإيجاد الجذِ التكعيبية للاعداد التالية

$$
\begin{equation*}
-\frac{Y V}{I Y_{0}}(ب) \tag{1}
\end{equation*}
$$

وضـح إجابتك بالرسم
(Y) استخدم فكرة المثال (\& -

$$
-\frac{1}{7 \varepsilon}--(ب)
$$

$$
\Lambda-(p)
$$

وضّ إجابتك بالرسم
(r) استخرج الجـذد التكعيبية للعدد التخيلي - ت بحـل المعادلة ع「「 = - ت . مثّل هذه الجذه في المستصي

$$
\begin{aligned}
& \text { تنتمي إلى المجموعة } \\
& \{v-, v-1-\} \ni \varepsilon \\
& \text { إذن جذو العدد - } 1 \text { التكعيبية هي : } \\
& =\frac{r}{r}+\frac{1}{r} \cdot=\frac{r}{r}-\frac{1}{r} \cdot 1-
\end{aligned}
$$

() إذا كان ع = | ع | (جتا هـ + ت حا هـ) فاستخدم الميغة (ع - r|) لاستنتاج أن
 أي أن عملية الضرب في العدد التخيلي ت هو التحيل عويل الهندسي في المستوي المركب

(0) استخدم نتيجة التمرين (£) في تمثيل الجذد التكييبة للعدد - ت المطلوبة في التمرين (٪) (7) عبر عن الجند التكعيية لأي عدد حقيقي موجب س بدلالة الجذر الموجب ${ }^{\text {(}}$

$$
\frac{\Gamma V}{r}+\frac{1}{r}-=\text { المركب }
$$

ك كر المطلوب في التمرين (7) بالنسبة لاكي عدد حقيقي سالب (V)
(^) أبّت أن مجموع الجذد التكعيبة لاي عدد حقيقي يساوي المفر .
تـــــــــرين عامـة
1 - بسط المقادير الـتالية بوضعها في المصرة س + ص ت :

$$
\begin{aligned}
& \frac{(\Xi+1)(\Xi+r)}{(ت r-1)(\Xi-1)}(\rightarrow) \quad \frac{1}{\Xi r^{2}-1}(P) \\
& \frac{1}{-r \eta-r} \frac{1}{=r \eta}+r(د) \quad{ }^{\wedge}(ت+1)(ب)
\end{aligned}
$$

r - أوجد مجموعة الحل لكل من المعادلات التالية :

$$
\begin{aligned}
& \text { ع r } \\
& \text { ع - عين مجموعة الحل لكل من العلاقات التالية : } \\
& 1=|\varepsilon|(\rightarrow) \quad=r=\bar{\varepsilon}-\varepsilon(ب) \quad T=\bar{\varepsilon}+\varepsilon(P) \\
& 1=|1-\varepsilon|(0) \quad|\varepsilon|=|\varepsilon|(\rightarrow) \quad 1>|\varepsilon|(\lrcorner)
\end{aligned}
$$

ه－إذا كانت ع
－أثبــت أن الضــرب في العدد المركب

V

$$
\begin{aligned}
& \checkmark \ni \text { と لك (} \quad(r+r)+\varepsilon \longleftrightarrow \text { と }(P) \\
& \text { とー - } \leftarrow \text { と (} \rightarrow \text {) }-\longleftarrow \text { と (ب) }
\end{aligned}
$$

1 －أوجد الجنود التكعيبية للعدد التخيلي ت بحـل المعادلة ع「＝ت ．
9 －إذا كان العدد المركب ع هــو أحد الجذد التربيعية للعدد المركب جـ فاّبت أن－ع هو
الجذر التربيعي الآخـر ．
． 1 －إذا كان العدد المركب ع هو أحد الجند التكعيبة للعدد المركب جـ فاثبت أن الجذرين
التكعيبين الآخرين هما ع ى و ع ی ، حيث ی =

المعبرين عن حا Y هـ ، حتا r هـ بـ بدلالة النسب المثـلثية للزاوية هـ ．
（ ارشاد ：احسب（ حتا هـ＋ت حا هـ ）بُ بطريقتين واستفد من تساوي الناتجين ）．
（Ir－أعد التمرين（II）لحساب حاזهـ ، حتآبـ بدلالة النسب المثية للزاوية هـ ．
r－اكتب بالشكل المثثي العدد المركب ：

1\＆－اكتب العدد المركب（

أجـــوبة تـــمارين البـــاب الأول
التــمارين (1 -)

$$
\begin{aligned}
& \text { ri do ، ir (r) } \\
& \text { 7 , 1. . © . ri. rr. (r) }
\end{aligned}
$$

التــمارين (1 - ؟)

$$
\begin{array}{r}
\phi \cdot\{9,0,1\} \cdot\{7, .\}(Y)(\varepsilon) \\
\frac{10}{\lambda} \cdot \frac{r}{1 \cdot} \cdot \varepsilon(p)(0) \\
\frac{r \wedge 9}{17} \cdot \frac{1}{\varepsilon} \quad(p)(7) \tag{P}
\end{array}
$$

التــمارين (1 - $)$

$$
\begin{aligned}
& \text { Err. . otv . Irq (P) (r) }
\end{aligned}
$$

التــمارين (1 - §)

$$
\begin{aligned}
& \text {. . } \varepsilon \text {. } \varepsilon \text {. \& (} \rightarrow \text {) }
\end{aligned}
$$

(0) (P) المفر

أجـــوبة تـــمـاريـن الباب الثاني
التـــماريـن ((- 1)
ثانيـاً :
(و) عناصر المف الثاني هي نفس عناصر العمود الثاني
(j) س
((() سِ مصفوفة من النوع ع × ع ع

$$
\text { (Y) سیى د = سـ ى لجميع قيم هـ من } \ \text { إلى ع وجميع قيم ى من إلى ع }
$$

$$
\begin{aligned}
& \text { 1. (د) , } \mathrm{r}(\rightarrow) \text {, } \wedge \text { (ب) } \wedge \text { (} P \text {) (1) } \\
& \{v, r\}(د),\{V\}(\rightarrow), ~ \varnothing(ب) \quad[1\}(P)(Y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { تـــمارين عامة } \\
& \text { (د) 109. } 109 \text { (P) (1) }
\end{aligned}
$$

$$
\begin{align*}
& \text { لايوجـد } \\
& \text { (ب) (r) } \tag{7}
\end{align*}
$$

$$
\begin{aligned}
& \text { 1. = , • = , } 0=\text { ب , } 0=P(r)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
10 . & 10 . \\
1 \ldots & 10 . \\
1 . . & r .
\end{array}\right](p)(\varepsilon)}
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{cc}
0 .-\varepsilon r & 0 \cdot+س \\
J \frac{r .}{r} & \Delta \\
\omega-\varepsilon^{r} & J \frac{\varepsilon}{r}
\end{array}\right] \text { (ب) }} \tag{ب}\\
& 10=\mathrm{J} \cdot 1 \ldots=\varepsilon \cdot 10 \cdot=\text { ص } 1 \ldots=1 \ldots \\
& \text { التــمـارين (؟ - } \\
& {\left[\begin{array}{ccc}
r & 1 & r \\
q- & q & \varepsilon
\end{array}\right](p)(1)} \\
& {\left[\begin{array}{lll}
1+2 & 1-ب & 1+p \\
1+, & 1+\infty & 1-د
\end{array}\right](\rightarrow)}
\end{align*}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\dot{u} & p & J \\
s & , & د
\end{array}\right](\nu)} \\
& {\left[\begin{array}{ll}
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right](\rightarrow)} \\
& {\left[\begin{array}{ll}
\text { ir } & 1 \\
11- & 1-
\end{array}\right](0)} \\
& {\left[\begin{array}{l}
\cdot \\
\cdot
\end{array}\right](b)} \\
& {\left[\begin{array}{cc}
\frac{1}{r} & \frac{v}{i} \\
\frac{\gamma i}{\varepsilon_{0}} & \frac{r}{\lambda}
\end{array}\right](v)} \\
& \underline{p}+\underset{=}{ }=\left[\begin{array}{l}
r- \\
\varepsilon \\
r
\end{array}\right. \\
& \left.\begin{array}{l}
1 \\
i- \\
\varepsilon-
\end{array}\right]=\underline{=}+\underline{p} \\
& { }^{(P)(r)} \\
& (\underline{-}+\underline{\underline{~}})+\underline{\underline{p}}=\left[\begin{array}{l}
0 \\
i \\
v
\end{array}\right. \\
& \left.\begin{array}{l}
1- \\
\varepsilon-
\end{array}\right]=+(\underline{\underline{2}}+\underline{P})(ب) \\
& P-\underline{C}=\left[\begin{array}{l}
\varepsilon \\
\dot{v}-
\end{array}\right. \\
& \left.\begin{array}{l}
\dot{r}- \\
\varepsilon-
\end{array}\right] \cdot \underline{=}-\underline{p}=\left[\begin{array}{l}
q- \\
\dot{v}
\end{array}\right. \\
& \left.\begin{array}{l}
0- \\
r \\
\dot{r}
\end{array}\right](\rightarrow)
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{ll}
r & r \\
r- & 1- \\
0- & \cdot
\end{array}\right] \text { (ب) }\left[\begin{array}{cc}
q_{-} & \varepsilon- \\
\varepsilon & r \\
1 . & \cdot
\end{array}\right](P)(r)} \\
& {\left[\begin{array}{ll}
\frac{\eta}{0} & \frac{\varepsilon}{0} \\
\frac{\varepsilon}{0} & \frac{r}{0} \\
r & -
\end{array}\right]} \tag{د}\\
& {[\cdot} \\
& {\left[\begin{array}{ll}
r- & r- \\
r & 1 \\
0 & \cdot
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 \varepsilon & 0- \\
V- & 10
\end{array}\right] \text { (ب) }\left[\begin{array}{c}
\wedge \\
r
\end{array}\right.} \\
& \left.\begin{array}{l}
1 \\
1 .
\end{array}\right](p)(\varepsilon) \\
& {\left[\begin{array}{l}
I r \\
r r
\end{array}\right.} \\
& \left.\begin{array}{c}
\varepsilon \\
1 .
\end{array}\right] \\
& \text { (د) } \\
& {\left[\begin{array}{l}
\varepsilon \\
v
\end{array}\right.} \\
& \left.\begin{array}{l}
1 \\
1 .
\end{array}\right](\rightarrow) \\
& {\left[\begin{array}{l}
\eta_{-} \\
v-
\end{array}\right.} \\
& \left.\begin{array}{l}
\text { r. } \\
10
\end{array}\right] \\
& \text { ()) }\left[\begin{array}{ll}
r_{-} & \varepsilon \\
q_{-} & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & \varepsilon- \\
\frac{1}{r}- & \frac{0}{r-}
\end{array}\right]=m(ب)\left[\begin{array}{cc}
r & \varepsilon- \\
q & 0-
\end{array}\right]=m(p)(0)} \\
& {\left[\begin{array}{cc}
\frac{1 \varepsilon}{0}- & r \\
\frac{19}{0}- & 1
\end{array}\right]=\underline{m}(1)\left[\begin{array}{cc}
r & \frac{0}{\varepsilon}- \\
\frac{r_{0}}{\varepsilon} & \cdot
\end{array}\right]=\underline{m} \text { (د) }}
\end{align*}
$$

التـــمارين ((-

$$
\begin{aligned}
& {\left[^{1-}\right.} \\
& 1] \\
& \text { (ب) } \\
& {\left[\begin{array}{ll}
\cdot & 1 \\
1- & \cdot
\end{array}\right]} \\
& \text { (P) (} 1 \text {) } \\
& {\left[\begin{array}{ll}
i & 1- \\
i & \cdot
\end{array}\right]} \\
& \text { (土) } \quad\left[\begin{array}{l}
1 \\
\cdot
\end{array}\right. \\
& i](\rightarrow) \\
& {\left[\begin{array}{l}
1- \\
\cdot
\end{array}\right.} \\
& \text { i- } \\
& \text { (0) }\left[\begin{array}{l}
1 \\
.
\end{array}\right. \\
& \text { i- }] \\
& {\left[\begin{array}{ll}
\cdot & 1 \\
i & \cdot
\end{array}\right]} \\
& \text { (}) \text {. }[\text { i } \\
& \left.\begin{array}{l}
1 \\
\cdot
\end{array}\right](j) \\
& \text { سِ } \\
& \left.\begin{array}{l}
1 \\
\cdot
\end{array}\right]=m(P)(Y)
\end{aligned}
$$

$$
\begin{aligned}
& r \times \varepsilon(د), r \times r(\rightarrow), r \times r(ب) \cdot r \times r(\\
& \text { (} P \text {) (r) } \\
& r \times \varepsilon(j) \text {, } \quad r \times r(0) \cdot r \times r(A) \\
& {\left[\begin{array}{ccc}
1- & r & 1 \\
1 & 1 & 1 \\
1 r & \varepsilon & \lambda
\end{array}\right](د) \cdot\left[\begin{array}{ccc}
10-r & r- \\
0 & 1- & r \\
0 & 0 & .
\end{array}\right](ب) \cdot[r \wedge](P)(\varepsilon)} \\
& {\left[\begin{array}{ccc}
r- & r & \Lambda_{-} \\
r \wedge & q & 1 \varepsilon-
\end{array}\right](j) \cdot\left[\begin{array}{cccc}
r & r- & \varepsilon & r_{-} \\
r- & 1 & r_{-} & 1
\end{array}\right](-)}
\end{aligned}
$$

التــمـاريـن (「 -

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & r- \\
\frac{1}{r}- & \frac{r}{r}
\end{array}\right] \text { (د) (د) }} \\
& {\left[\begin{array}{ll}
\frac{1}{r}-\frac{1}{r} \\
\frac{1}{\varepsilon} & \frac{1}{1 r}
\end{array}\right](0) \cdot\left[\begin{array}{ll}
\frac{r}{\varepsilon} & 1- \\
\frac{1}{\varepsilon} & \cdot
\end{array}\right](\rightarrow)} \\
& {\left[\begin{array}{cc}
\cdot & \frac{1}{p} \\
\frac{1}{4} & \cdot
\end{array}\right](\tau) \cdot\left[\begin{array}{ll}
1 & 1 \\
r & 1
\end{array}\right](j)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { r = () }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\frac{1}{r} & r \\
\frac{r}{r} & 0 \frac{0}{T}-
\end{array}\right]=1-(\text { صـ (ح) (ح) }}
\end{aligned}
$$

التـــمارين (؟ - ه)

$$
\begin{aligned}
& \text { (د) } \\
& {\left[\begin{array}{lll}
Y_{0} & r_{0} & r_{0} \\
00 & r q & \varepsilon r \\
V_{0} & \varepsilon 1 & r v \\
\varepsilon . & 1 r & 17
\end{array}\right](P)(r)} \\
& {\left[\begin{array}{llll}
17 & r v & \varepsilon r & r_{0} \\
1 r & \varepsilon 1 & r q & r_{0} \\
\varepsilon . & v_{0} & 00 & r_{0}
\end{array}\right] \text { (ب) }}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\vec{\wedge} & \vec{\prime} \\
v_{0} & \quad \cdot \\
\cdot & 9 .
\end{array}\right.} \\
& \left.\begin{array}{c}
p \\
+ \\
\text { Q. } \\
\text { A. }
\end{array}\right] \begin{array}{c}
p \\
\square \\
\sim
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & \vdots \\
1 & r \\
r & 1 \\
1 & 1
\end{array}\right]_{\sim}^{p} \begin{array}{l}
\text { e }
\end{array}} \\
& {\left[\begin{array}{lll}
\varepsilon & \omega & \omega \\
\varepsilon & r & r \\
\varepsilon & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
17 & v & 1 . \\
1 & r & \varepsilon \\
17 & 0 & 7
\end{array}\right] \quad(-)}
\end{aligned}
$$

التــمـارين（؟－1）

$$
\begin{aligned}
& \text { • Ir.- (ب) • Y. (P) (1) }
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{1 r}=0 \cdot \frac{9}{1 r}-=m(ب) \quad 1-=0 \cdot r=m(P) \tag{Y}\\
& =\int \cdot \quad=J(\mathrm{~J}) \quad \frac{1}{11}-=0 \cdot \frac{1 Y}{Y Y}=m(\rightarrow) \\
& \text { س-= } \tag{६}\\
& \text { \{7\}-と } ヨ \rightarrow \tag{0}
\end{align*}
$$

$$
\begin{aligned}
& \text {. } \quad \text {. } 1=\text { (} 1 \text { (} \\
& \frac{\varepsilon}{1 r}-=J \quad, \quad \frac{r}{1 r}=0 \quad, \quad \frac{0}{1 r}=m(ب) \\
& \frac{Y Y}{r}=\varepsilon \quad, \frac{Y Y}{Y}-=\infty \quad, \frac{1}{r}-=m(\Delta) \\
& \frac{\hat{V}}{V}-=\varepsilon \quad, \frac{Y \dot{V}}{V}-=\infty \quad \cdot \frac{Y}{Y}-=س(د) \\
& \{1-\}-\tau \ni \perp(v)
\end{aligned}
$$

$$
\begin{aligned}
& \text { التــمـاريـن العـــامة } \\
& {\left[\begin{array}{ll}
7 & 1 \\
i r & 1
\end{array}\right]=\underline{m}(1)} \\
& {\left[\begin{array}{ll}
Y- & 1- \\
1- & \varepsilon-
\end{array}\right]=(P)(Y)} \\
& {\left[\begin{array}{ll}
\frac{r}{11} & \frac{1}{11}- \\
\frac{1}{11}- & \frac{\varepsilon}{11}
\end{array}\right]==\frac{{ }^{1}}{}} \\
& {\left[\begin{array}{ll}
r- & \varepsilon- \\
r- & \tau-
\end{array}\right]==} \\
& \text { لايوجد نظير ضربي } \\
& {\left[\begin{array}{ll}
r_{-} & r- \\
\varepsilon- & r-
\end{array}\right]=(\rightarrow)} \\
& {\left[\begin{array}{ll}
\frac{r}{0} & \frac{r}{\dot{r}}- \\
\frac{1}{0}- & \frac{r}{1 .}
\end{array}\right]==\frac{{ }^{2}}{}} \\
& {\left[\begin{array}{ll}
1 & r \\
r & \varepsilon
\end{array}\right]=\begin{array}{l}
\text { (} 1 \text { (} 1 \text {) }
\end{array}}
\end{aligned}
$$

لايوجد نظير ضربي

$$
\begin{aligned}
& \text { [(r) } \\
& {\left[\begin{array}{ll}
\frac{r}{r} & 1- \\
\frac{1}{r} & \cdot
\end{array}\right]=1-\underline{m}(ب)(0)} \\
& {\left[\begin{array}{ll}
r & 0 \\
r & r
\end{array}\right]={ }^{r} p \quad(p)(r)} \\
& \text { (ب) } 1=\text { (ب) } \\
& \text { لايوجـد حــل (P) (V) } \\
& \frac{V V}{r r}==\infty \cdot \frac{r}{r r}-=m(ب) \\
& \frac{\Lambda}{r q}=J, \quad-\frac{7}{1 r}=\varepsilon \quad, \quad \frac{v}{r q}=m \quad(p)(q) \\
& r-=\varepsilon \cdot \frac{A V}{r}-=\infty \cdot \frac{1}{0}=\infty \quad(ب) \\
& \frac{-0 r}{\varepsilon 9 \lambda}-=\varepsilon, \frac{r Y q}{1 \varepsilon q \varepsilon}=0,-\frac{q \Lambda}{V \varepsilon V}=m \quad(\rightarrow)
\end{aligned}
$$

أجـــوبـة تـــمـاريـن البـاب الثالث

التمارين (

(0) (8) را راديان

التمـارين (
$\frac{\varepsilon}{r^{-}} \quad, \frac{r}{0} \quad$, $\frac{\varepsilon}{0}$ (1)
$\frac{1 r}{0}-\frac{1 r}{1 r} \quad \frac{0}{1 r}-(\varepsilon)$
$\frac{1 r}{0} \cdot \frac{1 r}{1 r}-\frac{0}{1 r}-$
(7) سـالب ، موجـب ، سـالب
ro- $\frac{r^{2}}{r}-(v)$
$-\frac{r}{r}-\frac{1}{r}-\frac{r}{r}$ (\wedge)
$\frac{\varepsilon}{r} \quad,-\frac{0}{\varepsilon}-\frac{r}{c} \quad$ (9)
$-\frac{\varepsilon}{r}-\cdots-\frac{0}{\varepsilon}-\cdots \frac{r}{0}$
$\frac{r}{\varepsilon}, \frac{0}{r}-\frac{\varepsilon}{0}$

$$
\begin{equation*}
-\frac{r}{\varepsilon}-\frac{0}{r}-\frac{\varepsilon}{0}- \tag{1.}
\end{equation*}
$$

$r-r V \cdot(r V+r)-\frac{T V}{\varepsilon}=T(I T)$

$$
\begin{aligned}
& \text { التمـاريـن (} \\
& r 2-\frac{r}{r} \cdot \frac{r}{r} \cdot \frac{1}{r}-(1) \\
& 1-1-\frac{r^{2}}{r}-\frac{Y V}{r}(r) \\
& F V, \frac{r V}{r} \cdot \frac{F}{r}-\frac{1}{r}-(r) \\
& 1 \cdot 1 \cdot \frac{Y V}{r} \cdot \frac{F r}{r}(\varepsilon) \\
& \frac{r}{r}, F V, \frac{1}{r} \cdot \frac{r V}{r} \text { (0) } \\
& \frac{r}{r}, r, \frac{1}{r} \cdot \frac{r}{r} \text { (T) } \\
& \text { (} \wedge \text { (} \mathrm{H} \text { () } \\
& r r_{-}=\rightarrow \text { 苗 } \quad \frac{\square}{r}=\rightarrow \text { (l.) } \\
& \frac{r}{r} \underline{V}_{-}=\rightarrow \frac{1}{r}-=\rightarrow \text { (II) } \\
& \frac{r V}{r}=\Delta \text { حت } \frac{1}{r}-=-\Delta \text { حا }(I r) \\
& \text { التمـاريـن (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { •ر○(ب) • ر , ○ (} p \text {) (\&) } \wedge \text { - (r) } \\
& \text { (} 77=\mid \text { سم } 17 \text { (} 1 \text { (} 1 \text { (} 0 \text {) } \\
& \text { (V) } \\
& \text { pl\& (7) }
\end{aligned}
$$

التمارين (

$$
\begin{aligned}
& (\bar{r}+r)-(ب) \\
& (1-\bar{r}) \frac{\bar{r}}{\varepsilon}(P) \\
& \frac{\Gamma V}{r}(د) \\
& (1+\bar{r}) \frac{r^{2}}{\varepsilon}-(\rightarrow) \\
& \bar{r}{ }_{r}(j) \\
& \frac{\Gamma}{r}(0) \quad \frac{1}{r}(-) \\
& \frac{r q}{V}-\cdots \frac{v}{r_{0}}-(r) \\
& \frac{\varepsilon \varepsilon}{1 r_{0}}-, \frac{\varepsilon}{0}-\cdots \frac{r}{0}-, \frac{11 v}{1 r_{0}}(\varepsilon) \\
& (\text { or } 0+9) \frac{1}{\lambda} \cdot(\text { or } 0-9) \frac{1}{\lambda} \text { (0) }
\end{aligned}
$$

$$
\begin{align*}
& \text { التمارين (} \\
& \frac{1}{1.2} \cdot \frac{r}{1.2} \cdot \frac{r q}{v} \cdot \frac{v}{r_{0}} \cdot \frac{r q}{r_{0}} \tag{1}\\
& \frac{1 r_{0}}{119}-\frac{119}{179} \cdot \frac{1 r}{179}-\cdots \frac{0}{1 r} \tag{Y}\\
& \text { - } \frac{1}{r \pi} \cdot \frac{0}{r \pi} \tag{r}
\end{align*}
$$

التمارين (

$$
\text { [rq. ، ‘rع. ، in. ، ir. ..\} (ب) \{br, } \left.\frac{b \varepsilon}{r}, b, \frac{b r}{r}, \cdot\right\}(p) \text { (o) }
$$

$$
\begin{equation*}
\{9 . . \cdot\}(ب) \cdot\left\{\frac{b}{r} \cdot \cdot\right\}(p) \tag{7}
\end{equation*}
$$

$$
\left\{\text { ©r...rl.\} (ب) } \quad\left\{\frac{b 11}{7} \cdot \frac{b v}{7}\right\}(p)(\wedge)\right.
$$

$$
\left\{{ }^{\circ} \mathrm{rlo}_{0} \cdot \mathrm{rr}_{0}, i r_{0}, \varepsilon_{0}\right\}(ب),\left\{\frac{b V}{\varepsilon}, \frac{b 0}{\varepsilon}, \frac{b r}{\varepsilon}, \frac{b}{\varepsilon}\right\}(p)(q)
$$

$$
\begin{aligned}
& \text { [rr., 'rl.\} (ب), }\left\{\frac{b l l}{T}, \frac{b v}{T}\right\}(P) \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [in. . . }\}(ب), \quad\{b, \cdot\}(p)(r) \\
& \{\text { \{ } \varepsilon 0\} \text { (ب) }\left\{\frac{b}{\varepsilon}\right\}(P)(\varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1-F V}{\varepsilon}(1) \cdot \frac{\Gamma V+r}{\varepsilon}(\rightarrow) \cdot \frac{1-\bar{r}}{\varepsilon}(ب) \cdot \frac{1}{\varepsilon} \\
& \frac{1}{r}(0) \cdot \frac{1}{\varepsilon}-(-)
\end{aligned}
$$

$$
\begin{aligned}
& \text { \{'rع. . ©r. .iA. .. \} (ب) \{ } \left.\frac{b \varepsilon}{r}, \frac{b r}{r}, b \cdot\right\}(P) \text { (l.) } \\
& \left\{\frac{b V}{\varepsilon}, \frac{b 0}{\varepsilon}, \frac{b r}{\varepsilon}, \frac{b}{\varepsilon}, \frac{b r}{r}, \frac{b}{r}\right\}(P) \text { (II) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \{rr.. ‘rl.. © . .\} (ب) }\left\{\frac{b l l}{7}, \frac{b V}{7}, \frac{b}{r}\right\}(P) \text { (Ir) } \\
& \text { \{'io..'r..'r... ' '. \} (ب) }\left\{\frac{b 0}{T}, \frac{b}{T}, \frac{b 0}{r}, \frac{b}{r}\right\}(P) \text { (Ir) } \\
& \{r . . . \text { '.. ‘i^. .. }\} \text { (ب) }\left\{\frac{b 0}{r}, \frac{b}{r}, b, \cdot\right\}(p) \\
& \text { (i^. = س (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { التمارين (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}) \\
& 100, r q=\bar{p}, \quad r \vee \bar{r}=\hat{p}, \quad \text { ' } \cdot \bar{\varepsilon} \wedge=\hat{\sim}(r) \\
& \cdot|r r \bar{r} v=\hat{\sim}, ~ \cdot r . \bar{r}|=\hat{ب}, ~ \wedge, \varepsilon q=\bar{p}(\varepsilon) \\
& \varepsilon q, \varepsilon r=\hat{*}, \text { lor, } 0 \lambda=\bar{Y}, ~ \mid r q, ~ r r=\bar{P}(0) \\
& \text { oq. }=\hat{\sim} \cdot \text { or } \hat{r r}=\hat{ب}, \quad \cdot r \bar{\varepsilon} \Lambda=\hat{p}(7)
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \text { (Ir.,r) (Ir) }
\end{aligned}
$$

التـــــاريـن العـــامة

$$
\begin{aligned}
& \stackrel{r}{0}+(\rightarrow) \quad \frac{r}{\varepsilon} \pm(ب), \frac{r}{0}- \pm(p)(\varepsilon) \\
& \frac{r}{0} \pm(0) \quad \frac{\varepsilon}{0}(-), \frac{\varepsilon}{0}-(د) \\
& -\frac{\varepsilon}{r} \pm(b) \quad,-\frac{\varepsilon}{0}-(\rightarrow),-\frac{r}{0} \mp(j)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (V) }
\end{aligned}
$$

$$
\begin{aligned}
& F \vee(\rightarrow) \quad-\frac{1}{r}(ب) \quad-\frac{1}{r}(p)(q) \\
& \text { \{'in.، 'rq..'ir.\} (ب) }\left\{b, \frac{b \varepsilon}{r}, \frac{b r}{r}\right\}(p)(1 \varepsilon) \\
& \{r . . \cdot\urcorner .\}(ب) \quad\left\{\frac{b 0}{r},-\frac{b}{r}\right\}(p)(10)
\end{aligned}
$$

$$
\begin{aligned}
& \text { rr\&.. }=\text { ب } \quad \text { ra.رrV }=\rightarrow \text { (} 19 \text {) } \\
& \text { •ir. = }=س \text { (rr) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أجابـة تـــمـاريـن البــاب الرابع } \\
& \text { التمارين (\& - } \\
& (0,17) \sim(1) \\
& \left\{\left(\frac{1}{\gamma_{V}}-\cdot \frac{1}{\gamma_{V}}-\right) \cdot\left(\frac{1}{\bar{r}_{V}} \cdot \frac{1}{\gamma_{V}}\right\}: \sim \cdot\{(1-\cdot \cdot)(1 \cdot \cdot)\} \text { ب }\left(\frac{1}{r} \cdot \cdot\right): P(r)\right. \\
& \text { التمارين (}
\end{aligned}
$$

$$
\begin{aligned}
& 1-\ldots,=\frac{r_{\cdot} r}{r_{0}}-\frac{r_{1}}{r_{0}} \cdot=\frac{\varepsilon}{0}+1, r(T) \\
& \frac{1}{\varepsilon}-\cdot=\frac{1}{r}+\frac{1}{r}-\cdots \frac{1}{r}+\frac{r_{r}}{r}(v) \\
& \text { \{ - -، ت، 1-،1\} (9) } \\
& \text { التمارين (\& - } \\
& (e+1) \frac{1}{\text { rV }} \pm(0) \\
& (=+r l) \frac{1}{r}+(r) \\
& (-r) \pm(V) \\
& \frac{r}{r_{0}} \cdot \frac{\varepsilon}{r_{0}}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1.) }
\end{aligned}
$$

$$
\begin{aligned}
& = \pm(i r)
\end{aligned}
$$

$$
\begin{aligned}
& \text { التمارين (ع - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}{ }^{\circ} \text { r.. }
\end{aligned}
$$

التمارين (ع - ه)

$$
\begin{aligned}
& \left\{\bar{s} \frac{r}{0}, v \frac{r}{0}, \frac{r}{0}\right\},\{\tau r, s r, r\} \text { (1) }
\end{aligned}
$$

التـــمـاريـن العــــامـة

$$
\begin{aligned}
& =\frac{r}{V}-1-17,=\frac{r v}{\varepsilon}+\frac{1}{\varepsilon} \text { (1) } \\
& \{r-, r, 1-1\},\{ت r-, ت r, \ldots\} \cdot=\frac{1}{r} \pm 1-\cdot\{r, 0\}(r)
\end{aligned}
$$

$$
\begin{aligned}
& \text { حا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ت-(1民) }
\end{aligned}
$$

g\%em
Printing a packaging
Tel (01) 265,144

